Welcome to Subscribe On Youtube
1359. Count All Valid Pickup and Delivery Options
Description
Given n
orders, each order consists of a pickup and a delivery service.
Count all valid pickup/delivery possible sequences such that delivery(i) is always after of pickup(i).
Since the answer may be too large, return it modulo 10^9 + 7.
Example 1:
Input: n = 1 Output: 1 Explanation: Unique order (P1, D1), Delivery 1 always is after of Pickup 1.
Example 2:
Input: n = 2 Output: 6 Explanation: All possible orders: (P1,P2,D1,D2), (P1,P2,D2,D1), (P1,D1,P2,D2), (P2,P1,D1,D2), (P2,P1,D2,D1) and (P2,D2,P1,D1). This is an invalid order (P1,D2,P2,D1) because Pickup 2 is after of Delivery 2.
Example 3:
Input: n = 3 Output: 90
Constraints:
1 <= n <= 500
Solutions
Solution 1: Dynamic Programming
We define $f[i]$ as the number of all valid pickup/delivery sequences for $i$ orders. Initially, $f[1] = 1$.
We can choose any of these $i$ orders as the last delivery order $D_i$, then its pickup order $P_i$ can be at any position in the previous $2 \times i - 1$, and the number of pickup/delivery sequences for the remaining $i - 1$ orders is $f[i - 1]$, so $f[i]$ can be expressed as:
\[f[i] = i \times (2 \times i - 1) \times f[i - 1]\]The final answer is $f[n]$.
We notice that the value of $f[i]$ is only related to $f[i - 1]$, so we can use a variable instead of an array to reduce the space complexity.
The time complexity is $O(n)$, where $n$ is the number of orders. The space complexity is $O(1)$.
-
class Solution { public int countOrders(int n) { final int mod = (int) 1e9 + 7; long f = 1; for (int i = 2; i <= n; ++i) { f = f * i * (2 * i - 1) % mod; } return (int) f; } }
-
class Solution { public: int countOrders(int n) { const int mod = 1e9 + 7; long long f = 1; for (int i = 2; i <= n; ++i) { f = f * i * (2 * i - 1) % mod; } return f; } };
-
class Solution: def countOrders(self, n: int) -> int: mod = 10**9 + 7 f = 1 for i in range(2, n + 1): f = (f * i * (2 * i - 1)) % mod return f
-
func countOrders(n int) int { const mod = 1e9 + 7 f := 1 for i := 2; i <= n; i++ { f = f * i * (2*i - 1) % mod } return f }
-
const MOD: i64 = (1e9 as i64) + 7; impl Solution { #[allow(dead_code)] pub fn count_orders(n: i32) -> i32 { let mut f = 1; for i in 2..=n as i64 { f = (i * (2 * i - 1) * f) % MOD; } f as i32 } }