Welcome to Subscribe On Youtube
1337. The K Weakest Rows in a Matrix
Description
You are given an m x n
binary matrix mat
of 1
's (representing soldiers) and 0
's (representing civilians). The soldiers are positioned in front of the civilians. That is, all the 1
's will appear to the left of all the 0
's in each row.
A row i
is weaker than a row j
if one of the following is true:
- The number of soldiers in row
i
is less than the number of soldiers in rowj
. - Both rows have the same number of soldiers and
i < j
.
Return the indices of the k
weakest rows in the matrix ordered from weakest to strongest.
Example 1:
Input: mat = [[1,1,0,0,0], [1,1,1,1,0], [1,0,0,0,0], [1,1,0,0,0], [1,1,1,1,1]], k = 3 Output: [2,0,3] Explanation: The number of soldiers in each row is: - Row 0: 2 - Row 1: 4 - Row 2: 1 - Row 3: 2 - Row 4: 5 The rows ordered from weakest to strongest are [2,0,3,1,4].
Example 2:
Input: mat = [[1,0,0,0], [1,1,1,1], [1,0,0,0], [1,0,0,0]], k = 2 Output: [0,2] Explanation: The number of soldiers in each row is: - Row 0: 1 - Row 1: 4 - Row 2: 1 - Row 3: 1 The rows ordered from weakest to strongest are [0,2,3,1].
Constraints:
m == mat.length
n == mat[i].length
2 <= n, m <= 100
1 <= k <= m
matrix[i][j]
is either 0 or 1.
Solutions
Binary search & sort.
-
class Solution { public int[] kWeakestRows(int[][] mat, int k) { int m = mat.length, n = mat[0].length; int[] res = new int[m]; List<Integer> idx = new ArrayList<>(); for (int i = 0; i < m; ++i) { idx.add(i); int[] row = mat[i]; int left = 0, right = n; while (left < right) { int mid = (left + right) >> 1; if (row[mid] == 0) { right = mid; } else { left = mid + 1; } } res[i] = left; } idx.sort(Comparator.comparingInt(a -> res[a])); int[] ans = new int[k]; for (int i = 0; i < k; ++i) { ans[i] = idx.get(i); } return ans; } }
-
class Solution { public: int search(vector<int>& m) { int l = 0; int h = m.size() - 1; while (l <= h) { int mid = l + (h - l) / 2; if (m[mid] == 0) h = mid - 1; else l = mid + 1; } return l; } vector<int> kWeakestRows(vector<vector<int>>& mat, int k) { vector<pair<int, int>> p; vector<int> res; for (int i = 0; i < mat.size(); i++) { int count = search(mat[i]); p.push_back({count, i}); } sort(p.begin(), p.end()); for (int i = 0; i < k; i++) { res.push_back(p[i].second); } return res; } };
-
class Solution: def kWeakestRows(self, mat: List[List[int]], k: int) -> List[int]: m, n = len(mat), len(mat[0]) ans = [n - bisect_right(row[::-1], 0) for row in mat] idx = list(range(m)) idx.sort(key=lambda i: ans[i]) return idx[:k]
-
func kWeakestRows(mat [][]int, k int) []int { m, n := len(mat), len(mat[0]) res := make([]int, m) var idx []int for i, row := range mat { idx = append(idx, i) left, right := 0, n for left < right { mid := (left + right) >> 1 if row[mid] == 0 { right = mid } else { left = mid + 1 } } res[i] = left } sort.Slice(idx, func(i, j int) bool { return res[idx[i]] < res[idx[j]] || (res[idx[i]] == res[idx[j]] && idx[i] < idx[j]) }) return idx[:k] }
-
function kWeakestRows(mat: number[][], k: number): number[] { let n = mat.length; let sumMap = mat.map((d, i) => [d.reduce((a, c) => a + c, 0), i]); let ans = []; // 冒泡排序 for (let i = 0; i < k; i++) { for (let j = i; j < n; j++) { if ( sumMap[j][0] < sumMap[i][0] || (sumMap[j][0] == sumMap[i][0] && sumMap[i][1] > sumMap[j][1]) ) { [sumMap[i], sumMap[j]] = [sumMap[j], sumMap[i]]; } } ans.push(sumMap[i][1]); } return ans; }