Welcome to Subscribe On Youtube

1329. Sort the Matrix Diagonally

Description

A matrix diagonal is a diagonal line of cells starting from some cell in either the topmost row or leftmost column and going in the bottom-right direction until reaching the matrix's end. For example, the matrix diagonal starting from mat[2][0], where mat is a 6 x 3 matrix, includes cells mat[2][0], mat[3][1], and mat[4][2].

Given an m x n matrix mat of integers, sort each matrix diagonal in ascending order and return the resulting matrix.

 

Example 1:

Input: mat = [[3,3,1,1],[2,2,1,2],[1,1,1,2]]
Output: [[1,1,1,1],[1,2,2,2],[1,2,3,3]]

Example 2:

Input: mat = [[11,25,66,1,69,7],[23,55,17,45,15,52],[75,31,36,44,58,8],[22,27,33,25,68,4],[84,28,14,11,5,50]]
Output: [[5,17,4,1,52,7],[11,11,25,45,8,69],[14,23,25,44,58,15],[22,27,31,36,50,66],[84,28,75,33,55,68]]

 

Constraints:

  • m == mat.length
  • n == mat[i].length
  • 1 <= m, n <= 100
  • 1 <= mat[i][j] <= 100

Solutions

  • class Solution {
        public int[][] diagonalSort(int[][] mat) {
            int m = mat.length, n = mat[0].length;
            for (int k = 0; k < Math.min(m, n) - 1; ++k) {
                for (int i = 0; i < m - 1; ++i) {
                    for (int j = 0; j < n - 1; ++j) {
                        if (mat[i][j] > mat[i + 1][j + 1]) {
                            int t = mat[i][j];
                            mat[i][j] = mat[i + 1][j + 1];
                            mat[i + 1][j + 1] = t;
                        }
                    }
                }
            }
            return mat;
        }
    }
    
  • class Solution {
    public:
        vector<vector<int>> diagonalSort(vector<vector<int>>& mat) {
            int m = mat.size(), n = mat[0].size();
            for (int k = 0; k < min(m, n) - 1; ++k)
                for (int i = 0; i < m - 1; ++i)
                    for (int j = 0; j < n - 1; ++j)
                        if (mat[i][j] > mat[i + 1][j + 1])
                            swap(mat[i][j], mat[i + 1][j + 1]);
            return mat;
        }
    };
    
  • class Solution:
        def diagonalSort(self, mat: List[List[int]]) -> List[List[int]]:
            m, n = len(mat), len(mat[0])
            for k in range(min(m, n) - 1):
                for i in range(m - 1):
                    for j in range(n - 1):
                        if mat[i][j] > mat[i + 1][j + 1]:
                            mat[i][j], mat[i + 1][j + 1] = mat[i + 1][j + 1], mat[i][j]
            return mat
    
    
  • func diagonalSort(mat [][]int) [][]int {
    	m, n := len(mat), len(mat[0])
    	for k := 0; k < m-1 && k < n-1; k++ {
    		for i := 0; i < m-1; i++ {
    			for j := 0; j < n-1; j++ {
    				if mat[i][j] > mat[i+1][j+1] {
    					mat[i][j], mat[i+1][j+1] = mat[i+1][j+1], mat[i][j]
    				}
    			}
    		}
    	}
    	return mat
    }
    
  • function diagonalSort(mat: number[][]): number[][] {
        const [m, n] = [mat.length, mat[0].length];
        const g: number[][] = Array.from({ length: m + n }, () => []);
        for (let i = 0; i < m; ++i) {
            for (let j = 0; j < n; ++j) {
                g[m - i + j].push(mat[i][j]);
            }
        }
        for (const e of g) {
            e.sort((a, b) => b - a);
        }
        for (let i = 0; i < m; ++i) {
            for (let j = 0; j < n; ++j) {
                mat[i][j] = g[m - i + j].pop()!;
            }
        }
        return mat;
    }
    
    
  • public class Solution {
        public int[][] DiagonalSort(int[][] mat) {
            int m = mat.Length;
            int n = mat[0].Length;
            List<List<int>> g = new List<List<int>>();
            for (int i = 0; i < m + n; i++) {
                g.Add(new List<int>());
            }
            for (int i = 0; i < m; i++) {
                for (int j = 0; j < n; j++) {
                    g[m - i + j].Add(mat[i][j]);
                }
            }
            foreach (var e in g) {
                e.Sort((a, b) => b.CompareTo(a));
            }
            for (int i = 0; i < m; i++) {
                for (int j = 0; j < n; j++) {
                    int val = g[m - i + j][g[m - i + j].Count - 1];
                    g[m - i + j].RemoveAt(g[m - i + j].Count - 1);
                    mat[i][j] = val;
                }
            }
            return mat;
        }
    }
    
  • impl Solution {
        pub fn diagonal_sort(mut mat: Vec<Vec<i32>>) -> Vec<Vec<i32>> {
            let m = mat.len();
            let n = mat[0].len();
            let mut g: Vec<Vec<i32>> = vec![vec![]; m + n];
            for i in 0..m {
                for j in 0..n {
                    g[m - i + j].push(mat[i][j]);
                }
            }
            for e in &mut g {
                e.sort_by(|a, b| b.cmp(a));
            }
            for i in 0..m {
                for j in 0..n {
                    mat[i][j] = g[m - i + j].pop().unwrap();
                }
            }
            mat
        }
    }
    
    

All Problems

All Solutions