Welcome to Subscribe On Youtube

Formatted question description: https://leetcode.ca/all/1289.html

1289. Minimum Falling Path Sum II (Hard)

Given a square grid of integers arr, a falling path with non-zero shifts is a choice of exactly one element from each row of arr, such that no two elements chosen in adjacent rows are in the same column.

Return the minimum sum of a falling path with non-zero shifts.

 

Example 1:

Input: arr = [[1,2,3],[4,5,6],[7,8,9]]
Output: 13
Explanation: 
The possible falling paths are:
[1,5,9], [1,5,7], [1,6,7], [1,6,8],
[2,4,8], [2,4,9], [2,6,7], [2,6,8],
[3,4,8], [3,4,9], [3,5,7], [3,5,9]
The falling path with the smallest sum is [1,5,7], so the answer is 13.

 

Constraints:

  • 1 <= arr.length == arr[i].length <= 200
  • -99 <= arr[i][j] <= 99

Related Topics:
Dynamic Programming

Similar Questions:

Solution 1. DP

// OJ: https://leetcode.com/problems/minimum-falling-path-sum-ii/
// Time: O(N^2)
// Space: O(1)
class Solution {
    pair<int, int> getSmallestTwo(vector<int> &A) {
        auto p = make_pair(-1, -1);
        for (int i = 0; i < A.size(); ++i) {
            if (p.first == -1 || A[i] < A[p.first]) {
                p.second = p.first;
                p.first = i;
            } else if (p.second == -1 || A[i] < A[p.second]) p.second = i;
        }
        return p;
    }
public:
    int minFallingPathSum(vector<vector<int>>& A) {
        int N = A.size();
        if (N == 1) return A[0][0];
        for (int i = 1; i < N; ++i) {
            auto p = getSmallestTwo(A[i - 1]);
            for (int j = 0; j < N; ++j) {
                A[i][j] += A[i - 1][p.first == j ? p.second : p.first];
            }
        }
        return *min_element(A.back().begin(), A.back().end());
    }
};

Solution 2. DP

In case it’s not allowed to change input array.

// OJ: https://leetcode.com/problems/minimum-falling-path-sum-ii/
// Time: O(N^2)
// Space: O(N)
class Solution {
    pair<int, int> getSmallestTwo(vector<int> &A) {
        auto p = make_pair(-1, -1);
        for (int i = 0; i < A.size(); ++i) {
            if (p.first == -1 || A[i] < A[p.first]) {
                p.second = p.first;
                p.first = i;
            } else if (p.second == -1 || A[i] < A[p.second]) p.second = i;
        }
        return p;
    }
public:
    int minFallingPathSum(vector<vector<int>>& A) {
        int N = A.size();
        if (N == 1) return A[0][0];
        vector<vector<int>> dp(2, vector<int>(N));
        for (int i = 0; i < N; ++i) dp[1][i] = A[0][i];
        for (int i = 1; i < N; ++i) {
            auto p = getSmallestTwo(dp[i % 2]);
            for (int j = 0; j < N; ++j) {
                dp[(i + 1) % 2][j] = A[i][j] + dp[i % 2][p.first == j ? p.second : p.first];
            }
        }
        return *min_element(dp[N % 2].begin(), dp[N % 2].end());
    }
};
  • class Solution {
        public int minFallingPathSum(int[][] arr) {
            int side = arr.length;
            if (side <= 1)
                return 0;
            int[][] dp = new int[side][side];   
            for (int i = 0; i < side; i++)
                dp[0][i] = arr[0][i];
            for (int i = 1; i < side; i++) {
                int[] minPrevRow = new int[side];
                System.arraycopy(dp[i - 1], 0, minPrevRow, 0, side);
                Arrays.sort(minPrevRow);
                int min1 = minPrevRow[0], min2 = minPrevRow[1];
                if (min1 == min2) {
                    for (int j = 0; j < side; j++)
                        dp[i][j] = min1 + arr[i][j];
                } else {
                    int minIndex = 0;
                    for (int j = 0; j < side; j++) {
                        if (dp[i - 1][j] == min1) {
                            minIndex = j;
                            break;
                        }
                    }
                    for (int j = 0; j < side; j++) {
                        int prevMin = j == minIndex ? min2 : min1;
                        dp[i][j] = prevMin + arr[i][j];
                    }
                }
            }
            int minSum = Integer.MAX_VALUE;
            for (int i = 0; i < side; i++)
                minSum = Math.min(minSum, dp[side - 1][i]);
            return minSum;
        }
    }
    
    ############
    
    class Solution {
        public int minFallingPathSum(int[][] grid) {
            int f = 0, g = 0;
            int fp = -1;
            final int inf = 1 << 30;
            for (int[] row : grid) {
                int ff = inf, gg = inf;
                int ffp = -1;
                for (int j = 0; j < row.length; ++j) {
                    int s = (j != fp ? f : g) + row[j];
                    if (s < ff) {
                        gg = ff;
                        ff = s;
                        ffp = j;
                    } else if (s < gg) {
                        gg = s;
                    }
                }
                f = ff;
                g = gg;
                fp = ffp;
            }
            return f;
        }
    }
    
  • // OJ: https://leetcode.com/problems/minimum-falling-path-sum-ii/
    // Time: O(N^2)
    // Space: O(1)
    class Solution {
        pair<int, int> getSmallestTwo(vector<int> &A) {
            auto p = make_pair(-1, -1);
            for (int i = 0; i < A.size(); ++i) {
                if (p.first == -1 || A[i] < A[p.first]) {
                    p.second = p.first;
                    p.first = i;
                } else if (p.second == -1 || A[i] < A[p.second]) p.second = i;
            }
            return p;
        }
    public:
        int minFallingPathSum(vector<vector<int>>& A) {
            int N = A.size();
            if (N == 1) return A[0][0];
            for (int i = 1; i < N; ++i) {
                auto p = getSmallestTwo(A[i - 1]);
                for (int j = 0; j < N; ++j) {
                    A[i][j] += A[i - 1][p.first == j ? p.second : p.first];
                }
            }
            return *min_element(A.back().begin(), A.back().end());
        }
    };
    
  • class Solution:
        def minFallingPathSum(self, grid: List[List[int]]) -> int:
            f = g = 0
            fp = -1
            for row in grid:
                ff = gg = inf
                ffp = -1
                for j, v in enumerate(row):
                    s = (g if j == fp else f) + v
                    if s < ff:
                        gg = ff
                        ff = s
                        ffp = j
                    elif s < gg:
                        gg = s
                f, g, fp, = (
                    ff,
                    gg,
                    ffp,
                )
            return f
    
    
  • func minFallingPathSum(grid [][]int) int {
    	const inf = 1 << 30
    	f, g := 0, 0
    	fp := -1
    	for _, row := range grid {
    		ff, gg := inf, inf
    		ffp := -1
    		for j, v := range row {
    			s := f
    			if j == fp {
    				s = g
    			}
    			s += v
    			if s < ff {
    				ff, gg, ffp = s, ff, j
    			} else if s < gg {
    				gg = s
    			}
    		}
    		f, g, fp = ff, gg, ffp
    	}
    	return f
    }
    

All Problems

All Solutions