Welcome to Subscribe On Youtube
1278. Palindrome Partitioning III
Description
You are given a string s
containing lowercase letters and an integer k
. You need to :
- First, change some characters of
s
to other lowercase English letters. - Then divide
s
intok
non-empty disjoint substrings such that each substring is a palindrome.
Return the minimal number of characters that you need to change to divide the string.
Example 1:
Input: s = "abc", k = 2 Output: 1 Explanation: You can split the string into "ab" and "c", and change 1 character in "ab" to make it palindrome.
Example 2:
Input: s = "aabbc", k = 3 Output: 0 Explanation: You can split the string into "aa", "bb" and "c", all of them are palindrome.
Example 3:
Input: s = "leetcode", k = 8 Output: 0
Constraints:
1 <= k <= s.length <= 100
.s
only contains lowercase English letters.
Solutions
-
class Solution { public int palindromePartition(String s, int k) { int n = s.length(); int[][] g = new int[n][n]; for (int i = n - 1; i >= 0; --i) { for (int j = i; j < n; ++j) { g[i][j] = s.charAt(i) != s.charAt(j) ? 1 : 0; if (i + 1 < j) { g[i][j] += g[i + 1][j - 1]; } } } int[][] f = new int[n + 1][k + 1]; for (int i = 1; i <= n; ++i) { for (int j = 1; j <= Math.min(i, k); ++j) { if (j == 1) { f[i][j] = g[0][i - 1]; } else { f[i][j] = 10000; for (int h = j - 1; h < i; ++h) { f[i][j] = Math.min(f[i][j], f[h][j - 1] + g[h][i - 1]); } } } } return f[n][k]; } }
-
class Solution { public: int palindromePartition(string s, int k) { int n = s.size(); vector<vector<int>> g(n, vector<int>(n)); for (int i = n - 1; i >= 0; --i) { for (int j = i; j < n; ++j) { g[i][j] = s[i] != s[j] ? 1 : 0; if (i + 1 < j) g[i][j] += g[i + 1][j - 1]; } } vector<vector<int>> f(n + 1, vector<int>(k + 1)); for (int i = 1; i <= n; ++i) { for (int j = 1; j <= min(i, k); ++j) { if (j == 1) { f[i][j] = g[0][i - 1]; } else { f[i][j] = 10000; for (int h = j - 1; h < i; ++h) { f[i][j] = min(f[i][j], f[h][j - 1] + g[h][i - 1]); } } } } return f[n][k]; } };
-
class Solution: def palindromePartition(self, s: str, k: int) -> int: n = len(s) g = [[0] * n for _ in range(n)] for i in range(n - 1, -1, -1): for j in range(i + 1, n): g[i][j] = int(s[i] != s[j]) if i + 1 < j: g[i][j] += g[i + 1][j - 1] f = [[0] * (k + 1) for _ in range(n + 1)] for i in range(1, n + 1): for j in range(1, min(i, k) + 1): if j == 1: f[i][j] = g[0][i - 1] else: f[i][j] = inf for h in range(j - 1, i): f[i][j] = min(f[i][j], f[h][j - 1] + g[h][i - 1]) return f[n][k]
-
func palindromePartition(s string, k int) int { n := len(s) g := make([][]int, n) for i := range g { g[i] = make([]int, n) } for i := n - 1; i >= 0; i-- { for j := 1; j < n; j++ { if s[i] != s[j] { g[i][j] = 1 } if i+1 < j { g[i][j] += g[i+1][j-1] } } } f := make([][]int, n+1) for i := range f { f[i] = make([]int, k+1) } for i := 1; i <= n; i++ { for j := 1; j <= min(i, k); j++ { if j == 1 { f[i][j] = g[0][i-1] } else { f[i][j] = 100000 for h := j - 1; h < i; h++ { f[i][j] = min(f[i][j], f[h][j-1]+g[h][i-1]) } } } } return f[n][k] }
-
function palindromePartition(s: string, k: number): number { const n = s.length; const g: number[][] = Array.from({ length: n }, () => Array(n).fill(0)); for (let i = n - 1; i >= 0; i--) { for (let j = i + 1; j < n; j++) { g[i][j] = s[i] !== s[j] ? 1 : 0; if (i + 1 < j) { g[i][j] += g[i + 1][j - 1]; } } } const f: number[][] = Array.from({ length: n + 1 }, () => Array(k + 1).fill(0)); for (let i = 1; i <= n; i++) { for (let j = 1; j <= Math.min(i, k); j++) { if (j === 1) { f[i][j] = g[0][i - 1]; } else { f[i][j] = 1 << 30; for (let h = j - 1; h < i; h++) { f[i][j] = Math.min(f[i][j], f[h][j - 1] + g[h][i - 1]); } } } } return f[n][k]; }
-
impl Solution { pub fn palindrome_partition(s: String, k: i32) -> i32 { let n = s.len(); let s: Vec<char> = s.chars().collect(); let mut g = vec![vec![0; n]; n]; for i in (0..n).rev() { for j in i + 1..n { g[i][j] = if s[i] != s[j] { 1 } else { 0 }; if i + 1 < j { g[i][j] += g[i + 1][j - 1]; } } } let mut f = vec![vec![0; (k + 1) as usize]; n + 1]; let inf = i32::MAX; for i in 1..=n { for j in 1..=i.min(k as usize) { if j == 1 { f[i][j] = g[0][i - 1]; } else { f[i][j] = inf; for h in (j - 1)..i { f[i][j] = f[i][j].min(f[h][j - 1] + g[h][i - 1]); } } } } f[n][k as usize] } }