Welcome to Subscribe On Youtube
1272. Remove Interval
Description
A set of real numbers can be represented as the union of several disjoint intervals, where each interval is in the form [a, b)
. A real number x
is in the set if one of its intervals [a, b)
contains x
(i.e. a <= x < b
).
You are given a sorted list of disjoint intervals intervals
representing a set of real numbers as described above, where intervals[i] = [ai, bi]
represents the interval [ai, bi)
. You are also given another interval toBeRemoved
.
Return the set of real numbers with the interval toBeRemoved
removed from intervals
. In other words, return the set of real numbers such that every x
in the set is in intervals
but not in toBeRemoved
. Your answer should be a sorted list of disjoint intervals as described above.
Example 1:
Input: intervals = [[0,2],[3,4],[5,7]], toBeRemoved = [1,6] Output: [[0,1],[6,7]]
Example 2:
Input: intervals = [[0,5]], toBeRemoved = [2,3] Output: [[0,2],[3,5]]
Example 3:
Input: intervals = [[-5,-4],[-3,-2],[1,2],[3,5],[8,9]], toBeRemoved = [-1,4] Output: [[-5,-4],[-3,-2],[4,5],[8,9]]
Constraints:
1 <= intervals.length <= 104
-109 <= ai < bi <= 109
Solutions
Solution 1: Case Discussion
We denote the interval to be removed as $[x, y)$. We traverse the interval list, and for each interval $[a, b)$, there are three cases:
- $a \geq y$ or $b \leq x$, which means that this interval does not intersect with the interval to be removed. We directly add this interval to the answer.
- $a \lt x$, $b \gt y$, which means that this interval intersects with the interval to be removed. We split this interval into two intervals and add them to the answer.
- $a \geq x$, $b \leq y$, which means that this interval is completely covered by the interval to be removed. We do not add it to the answer.
The time complexity is $O(n)$, where $n$ is the length of the interval list. The space complexity is $O(1)$.
-
class Solution { public List<List<Integer>> removeInterval(int[][] intervals, int[] toBeRemoved) { int x = toBeRemoved[0], y = toBeRemoved[1]; List<List<Integer>> ans = new ArrayList<>(); for (var e : intervals) { int a = e[0], b = e[1]; if (a >= y || b <= x) { ans.add(Arrays.asList(a, b)); } else { if (a < x) { ans.add(Arrays.asList(a, x)); } if (b > y) { ans.add(Arrays.asList(y, b)); } } } return ans; } }
-
class Solution { public: vector<vector<int>> removeInterval(vector<vector<int>>& intervals, vector<int>& toBeRemoved) { int x = toBeRemoved[0], y = toBeRemoved[1]; vector<vector<int>> ans; for (auto& e : intervals) { int a = e[0], b = e[1]; if (a >= y || b <= x) { ans.push_back(e); } else { if (a < x) { ans.push_back({a, x}); } if (b > y) { ans.push_back({y, b}); } } } return ans; } };
-
''' >>> a [1, 2, 3, 4, 5] >>> >>> x, y = a Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: too many values to unpack >>> x,y,z,p,q = a >>> x 1 >>> y 2 >>> z 3 ''' class Solution: def removeInterval( self, intervals: List[List[int]], toBeRemoved: List[int] ) -> List[List[int]]: x, y = toBeRemoved ans = [] for a, b in intervals: if a >= y or b <= x: ans.append([a, b]) else: if a < x: ans.append([a, x]) # in this else block, meaning b>x, so no need to append [a,min(b,x)] if b > y: ans.append([y, b]) # if x < a < b < y, then delete (a,b), do nothing and skip here return ans ############ class Solution: def removeInterval( self, intervals: List[List[int]], toBeRemoved: List[int] ) -> List[List[int]]: result = [] for ind, intv in enumerate(intervals): if intv[1] < toBeRemoved[0] or toBeRemoved[1] < intv[0]: result.append(intv) else: if intv[0] < toBeRemoved[0]: result.append([intv[0], min(intv[1], toBeRemoved[0])]) # min() is not needed if intv[1] > toBeRemoved[1]: result.append([max(intv[0], toBeRemoved[1]), intv[1]]) return result
-
func removeInterval(intervals [][]int, toBeRemoved []int) (ans [][]int) { x, y := toBeRemoved[0], toBeRemoved[1] for _, e := range intervals { a, b := e[0], e[1] if a >= y || b <= x { ans = append(ans, e) } else { if a < x { ans = append(ans, []int{a, x}) } if b > y { ans = append(ans, []int{y, b}) } } } return }