Welcome to Subscribe On Youtube

1263. Minimum Moves to Move a Box to Their Target Location

Description

A storekeeper is a game in which the player pushes boxes around in a warehouse trying to get them to target locations.

The game is represented by an m x n grid of characters grid where each element is a wall, floor, or box.

Your task is to move the box 'B' to the target position 'T' under the following rules:

  • The character 'S' represents the player. The player can move up, down, left, right in grid if it is a floor (empty cell).
  • The character '.' represents the floor which means a free cell to walk.
  • The character '#' represents the wall which means an obstacle (impossible to walk there).
  • There is only one box 'B' and one target cell 'T' in the grid.
  • The box can be moved to an adjacent free cell by standing next to the box and then moving in the direction of the box. This is a push.
  • The player cannot walk through the box.

Return the minimum number of pushes to move the box to the target. If there is no way to reach the target, return -1.

 

Example 1:

Input: grid = [["#","#","#","#","#","#"],
               ["#","T","#","#","#","#"],
               ["#",".",".","B",".","#"],
               ["#",".","#","#",".","#"],
               ["#",".",".",".","S","#"],
               ["#","#","#","#","#","#"]]
Output: 3
Explanation: We return only the number of times the box is pushed.

Example 2:

Input: grid = [["#","#","#","#","#","#"],
               ["#","T","#","#","#","#"],
               ["#",".",".","B",".","#"],
               ["#","#","#","#",".","#"],
               ["#",".",".",".","S","#"],
               ["#","#","#","#","#","#"]]
Output: -1

Example 3:

Input: grid = [["#","#","#","#","#","#"],
               ["#","T",".",".","#","#"],
               ["#",".","#","B",".","#"],
               ["#",".",".",".",".","#"],
               ["#",".",".",".","S","#"],
               ["#","#","#","#","#","#"]]
Output: 5
Explanation: push the box down, left, left, up and up.

 

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 20
  • grid contains only characters '.', '#', 'S', 'T', or 'B'.
  • There is only one character 'S', 'B', and 'T' in the grid.

Solutions

Solution 1: Double-ended Queue + BFS

We consider the player’s position and the box’s position as a state, i.e., $(s_i, s_j, b_i, b_j)$, where $(s_i, s_j)$ is the player’s position, and $(b_i, b_j)$ is the box’s position. In the code implementation, we define a function $f(i, j)$, which maps the two-dimensional coordinates $(i, j)$ to a one-dimensional state number, i.e., $f(i, j) = i \times n + j$, where $n$ is the number of columns in the grid. So the player and the box’s state is $(f(s_i, s_j), f(b_i, b_j))$.

First, we traverse the grid to find the initial positions of the player and the box, denoted as $(s_i, s_j)$ and $(b_i, b_j)$.

Then, we define a double-ended queue $q$, where each element is a triplet $(f(s_i, s_j), f(b_i, b_j), d)$, indicating that the player is at $(s_i, s_j)$, the box is at $(b_i, b_j)$, and $d$ pushes have been made. Initially, we add $(f(s_i, s_j), f(b_i, b_j), 0)$ to the queue $q$.

Additionally, we use a two-dimensional array $vis$ to record whether each state has been visited. Initially, $vis[f(s_i, s_j), f(b_i, b_j)]$ is marked as visited.

Next, we start the breadth-first search.

In each step of the search, we take out the queue head element $(f(s_i, s_j), f(b_i, b_j), d)$, and check whether $grid[b_i][b_j] = ‘T’$ is satisfied. If it is, it means the box has been pushed to the target position, and now $d$ can be returned as the answer.

Otherwise, we enumerate the player’s next move direction. The player’s new position is denoted as $(s_x, s_y)$. If $(s_x, s_y)$ is a valid position, we judge whether $(s_x, s_y)$ is the same as the box’s position $(b_i, b_j)$:

  • If they are the same, it means the player has reached the box’s position and pushed the box forward by one step. The box’s new position is $(b_x, b_y)$. If $(b_x, b_y)$ is a valid position, and the state $(f(s_x, s_y), f(b_x, b_y))$ has not been visited, then we add $(f(s_x, s_y), f(b_x, b_y), d + 1)$ to the end of the queue $q$, and mark $vis[f(s_x, s_y), f(b_x, b_y)]$ as visited.
  • If they are different, it means the player has not pushed the box. Then we only need to judge whether the state $(f(s_x, s_y), f(b_i, b_j))$ has been visited. If it has not been visited, then we add $(f(s_x, s_y), f(b_i, b_j), d)$ to the head of the queue $q$, and mark $vis[f(s_x, s_y), f(b_i, b_j)]$ as visited.

We continue the breadth-first search until the queue is empty.

Note, if the box is pushed, the push count $d$ needs to be incremented by $1$, and the new state is added to the end of the queue $q$. If the box is not pushed, the push count $d$ remains unchanged, and the new state is added to the head of the queue $q$.

Finally, if no valid push scheme is found, then return $-1$.

The time complexity is $O(m^2 \times n^2)$, and the space complexity is $O(m^2 \times n^2)$. Where $m$ and $n$ are the number of rows and columns in the grid, respectively.

  • class Solution {
        private int m;
        private int n;
        private char[][] grid;
    
        public int minPushBox(char[][] grid) {
            m = grid.length;
            n = grid[0].length;
            this.grid = grid;
            int si = 0, sj = 0, bi = 0, bj = 0;
            for (int i = 0; i < m; ++i) {
                for (int j = 0; j < n; ++j) {
                    if (grid[i][j] == 'S') {
                        si = i;
                        sj = j;
                    } else if (grid[i][j] == 'B') {
                        bi = i;
                        bj = j;
                    }
                }
            }
            int[] dirs = {-1, 0, 1, 0, -1};
            Deque<int[]> q = new ArrayDeque<>();
            boolean[][] vis = new boolean[m * n][m * n];
            q.offer(new int[] {f(si, sj), f(bi, bj), 0});
            vis[f(si, sj)][f(bi, bj)] = true;
            while (!q.isEmpty()) {
                var p = q.poll();
                int d = p[2];
                bi = p[1] / n;
                bj = p[1] % n;
                if (grid[bi][bj] == 'T') {
                    return d;
                }
                si = p[0] / n;
                sj = p[0] % n;
                for (int k = 0; k < 4; ++k) {
                    int sx = si + dirs[k], sy = sj + dirs[k + 1];
                    if (!check(sx, sy)) {
                        continue;
                    }
                    if (sx == bi && sy == bj) {
                        int bx = bi + dirs[k], by = bj + dirs[k + 1];
                        if (!check(bx, by) || vis[f(sx, sy)][f(bx, by)]) {
                            continue;
                        }
                        vis[f(sx, sy)][f(bx, by)] = true;
                        q.offer(new int[] {f(sx, sy), f(bx, by), d + 1});
                    } else if (!vis[f(sx, sy)][f(bi, bj)]) {
                        vis[f(sx, sy)][f(bi, bj)] = true;
                        q.offerFirst(new int[] {f(sx, sy), f(bi, bj), d});
                    }
                }
            }
            return -1;
        }
    
        private int f(int i, int j) {
            return i * n + j;
        }
    
        private boolean check(int i, int j) {
            return i >= 0 && i < m && j >= 0 && j < n && grid[i][j] != '#';
        }
    }
    
  • class Solution {
    public:
        int minPushBox(vector<vector<char>>& grid) {
            int m = grid.size(), n = grid[0].size();
            int si, sj, bi, bj;
            for (int i = 0; i < m; ++i) {
                for (int j = 0; j < n; ++j) {
                    if (grid[i][j] == 'S') {
                        si = i, sj = j;
                    } else if (grid[i][j] == 'B') {
                        bi = i, bj = j;
                    }
                }
            }
            auto f = [&](int i, int j) {
                return i * n + j;
            };
            auto check = [&](int i, int j) {
                return i >= 0 && i < m && j >= 0 && j < n && grid[i][j] != '#';
            };
            int dirs[5] = {-1, 0, 1, 0, -1};
            deque<tuple<int, int, int>> q;
            q.emplace_back(f(si, sj), f(bi, bj), 0);
            bool vis[m * n][m * n];
            memset(vis, false, sizeof(vis));
            vis[f(si, sj)][f(bi, bj)] = true;
            while (!q.empty()) {
                auto [s, b, d] = q.front();
                q.pop_front();
                si = s / n, sj = s % n;
                bi = b / n, bj = b % n;
                if (grid[bi][bj] == 'T') {
                    return d;
                }
                for (int k = 0; k < 4; ++k) {
                    int sx = si + dirs[k], sy = sj + dirs[k + 1];
                    if (!check(sx, sy)) {
                        continue;
                    }
                    if (sx == bi && sy == bj) {
                        int bx = bi + dirs[k], by = bj + dirs[k + 1];
                        if (!check(bx, by) || vis[f(sx, sy)][f(bx, by)]) {
                            continue;
                        }
                        vis[f(sx, sy)][f(bx, by)] = true;
                        q.emplace_back(f(sx, sy), f(bx, by), d + 1);
                    } else if (!vis[f(sx, sy)][f(bi, bj)]) {
                        vis[f(sx, sy)][f(bi, bj)] = true;
                        q.emplace_front(f(sx, sy), f(bi, bj), d);
                    }
                }
            }
            return -1;
        }
    };
    
  • class Solution:
        def minPushBox(self, grid: List[List[str]]) -> int:
            def f(i: int, j: int) -> int:
                return i * n + j
    
            def check(i: int, j: int) -> bool:
                return 0 <= i < m and 0 <= j < n and grid[i][j] != "#"
    
            for i, row in enumerate(grid):
                for j, c in enumerate(row):
                    if c == "S":
                        si, sj = i, j
                    elif c == "B":
                        bi, bj = i, j
            m, n = len(grid), len(grid[0])
            dirs = (-1, 0, 1, 0, -1)
            q = deque([(f(si, sj), f(bi, bj), 0)])
            vis = [[False] * (m * n) for _ in range(m * n)]
            vis[f(si, sj)][f(bi, bj)] = True
            while q:
                s, b, d = q.popleft()
                bi, bj = b // n, b % n
                if grid[bi][bj] == "T":
                    return d
                si, sj = s // n, s % n
                for a, b in pairwise(dirs):
                    sx, sy = si + a, sj + b
                    if not check(sx, sy):
                        continue
                    if sx == bi and sy == bj:
                        bx, by = bi + a, bj + b
                        if not check(bx, by) or vis[f(sx, sy)][f(bx, by)]:
                            continue
                        vis[f(sx, sy)][f(bx, by)] = True
                        q.append((f(sx, sy), f(bx, by), d + 1))
                    elif not vis[f(sx, sy)][f(bi, bj)]:
                        vis[f(sx, sy)][f(bi, bj)] = True
                        q.appendleft((f(sx, sy), f(bi, bj), d))
            return -1
    
    
  • func minPushBox(grid [][]byte) int {
    	m, n := len(grid), len(grid[0])
    	var si, sj, bi, bj int
    	for i, row := range grid {
    		for j, c := range row {
    			if c == 'S' {
    				si, sj = i, j
    			} else if c == 'B' {
    				bi, bj = i, j
    			}
    		}
    	}
    	f := func(i, j int) int {
    		return i*n + j
    	}
    	check := func(i, j int) bool {
    		return i >= 0 && i < m && j >= 0 && j < n && grid[i][j] != '#'
    	}
    	q := [][]int{[]int{f(si, sj), f(bi, bj), 0} }
    	vis := make([][]bool, m*n)
    	for i := range vis {
    		vis[i] = make([]bool, m*n)
    	}
    	vis[f(si, sj)][f(bi, bj)] = true
    	dirs := [5]int{-1, 0, 1, 0, -1}
    	for len(q) > 0 {
    		p := q[0]
    		q = q[1:]
    		si, sj, bi, bj = p[0]/n, p[0]%n, p[1]/n, p[1]%n
    		d := p[2]
    		if grid[bi][bj] == 'T' {
    			return d
    		}
    		for k := 0; k < 4; k++ {
    			sx, sy := si+dirs[k], sj+dirs[k+1]
    			if !check(sx, sy) {
    				continue
    			}
    			if sx == bi && sy == bj {
    				bx, by := bi+dirs[k], bj+dirs[k+1]
    				if !check(bx, by) || vis[f(sx, sy)][f(bx, by)] {
    					continue
    				}
    				vis[f(sx, sy)][f(bx, by)] = true
    				q = append(q, []int{f(sx, sy), f(bx, by), d + 1})
    			} else if !vis[f(sx, sy)][f(bi, bj)] {
    				vis[f(sx, sy)][f(bi, bj)] = true
    				q = append([][]int{[]int{f(sx, sy), f(bi, bj), d} }, q...)
    			}
    		}
    	}
    	return -1
    }
    
  • function minPushBox(grid: string[][]): number {
        const [m, n] = [grid.length, grid[0].length];
        let [si, sj, bi, bj] = [0, 0, 0, 0];
        for (let i = 0; i < m; ++i) {
            for (let j = 0; j < n; ++j) {
                if (grid[i][j] === 'S') {
                    [si, sj] = [i, j];
                } else if (grid[i][j] === 'B') {
                    [bi, bj] = [i, j];
                }
            }
        }
        const f = (i: number, j: number): number => i * n + j;
        const check = (i: number, j: number): boolean =>
            i >= 0 && i < m && j >= 0 && j < n && grid[i][j] !== '#';
    
        const q: Deque<[number, number, number]> = new Deque();
        const vis: boolean[][] = new Array(m * n).fill(0).map(() => new Array(m * n).fill(false));
        q.push([f(si, sj), f(bi, bj), 0]);
        vis[f(si, sj)][f(bi, bj)] = true;
        const dirs: number[] = [-1, 0, 1, 0, -1];
        while (q.size() > 0) {
            const [s, b, d] = q.shift()!;
            const [si, sj] = [Math.floor(s / n), s % n];
            const [bi, bj] = [Math.floor(b / n), b % n];
            if (grid[bi][bj] === 'T') {
                return d;
            }
            for (let k = 0; k < 4; ++k) {
                const [sx, sy] = [si + dirs[k], sj + dirs[k + 1]];
                if (!check(sx, sy)) {
                    continue;
                }
                if (sx === bi && sy === bj) {
                    const [bx, by] = [bi + dirs[k], bj + dirs[k + 1]];
                    if (!check(bx, by) || vis[f(sx, sy)][f(bx, by)]) {
                        continue;
                    }
                    vis[f(sx, sy)][f(bx, by)] = true;
                    q.push([f(sx, sy), f(bx, by), d + 1]);
                } else if (!vis[f(sx, sy)][f(bi, bj)]) {
                    vis[f(sx, sy)][f(bi, bj)] = true;
                    q.unshift([f(sx, sy), f(bi, bj), d]);
                }
            }
        }
        return -1;
    }
    
    /* 以下是双向列队模板类 */
    class CircularDeque<T> {
        prev: CircularDeque<T> | null;
        next: CircularDeque<T> | null;
        begin: number;
        end: number;
        empty: boolean;
        data: T[];
        constructor(N: number) {
            this.prev = this.next = null;
            this.begin = this.end = 0;
            this.empty = true;
            this.data = Array(N);
        }
    
        isFull(): boolean {
            return this.end === this.begin && !this.empty;
        }
    
        isEmpty(): boolean {
            return this.empty;
        }
    
        push(val: T): boolean {
            if (this.isFull()) return false;
            this.empty = false;
            this.data[this.end] = val;
            this.end = (this.end + 1) % this.data.length;
            return true;
        }
    
        front(): T | undefined {
            return this.isEmpty() ? undefined : this.data[this.begin];
        }
    
        back(): T | undefined {
            return this.isEmpty() ? undefined : this.data[this.end - 1];
        }
    
        pop(): T | undefined {
            if (this.isEmpty()) return undefined;
            const value = this.data[this.end - 1];
            this.end = (this.end - 1) % this.data.length;
            if (this.end < 0) this.end += this.data.length;
            if (this.end === this.begin) this.empty = true;
            return value;
        }
    
        unshift(val: T): boolean {
            if (this.isFull()) return false;
            this.empty = false;
            this.begin = (this.begin - 1) % this.data.length;
            if (this.begin < 0) this.begin += this.data.length;
            this.data[this.begin] = val;
            return true;
        }
    
        shift(): T | undefined {
            if (this.isEmpty()) return undefined;
            const value = this.data[this.begin];
            this.begin = (this.begin + 1) % this.data.length;
            if (this.end === this.begin) this.empty = true;
            return value;
        }
    
        *values(): Generator<T, void, undefined> {
            if (this.isEmpty()) return undefined;
            let i = this.begin;
            do {
                yield this.data[i];
                i = (i + 1) % this.data.length;
            } while (i !== this.end);
        }
    }
    
    class Deque<T> {
        head: CircularDeque<T>;
        tail: CircularDeque<T>;
        _size: number;
        constructor(collection: T[] = []) {
            this.head = new CircularDeque<T>(128);
            this.tail = new CircularDeque<T>(128);
            this.tail.empty = this.head.empty = false;
            this.tail.prev = this.head;
            this.head.next = this.tail;
            this._size = 0;
            for (const item of collection) this.push(item);
        }
    
        size(): number {
            return this._size;
        }
    
        push(val: T): void {
            let last = this.tail.prev!;
            if (last.isFull()) {
                const inserted = new CircularDeque<T>(128);
    
                this.tail.prev = inserted;
                inserted.next = this.tail;
    
                last.next = inserted;
                inserted.prev = last;
    
                last = inserted;
            }
            last.push(val);
            this._size++;
        }
    
        back(): T | undefined {
            if (this._size === 0) return;
            return this.tail.prev!.back();
        }
    
        pop(): T | undefined {
            if (this.head.next === this.tail) return undefined;
            const last = this.tail.prev!;
            const value = last.pop();
            if (last.isEmpty()) {
                this.tail.prev = last.prev;
                last.prev!.next = this.tail;
            }
            this._size--;
            return value;
        }
    
        unshift(val: T): void {
            let first = this.head.next!;
            if (first.isFull()) {
                const inserted = new CircularDeque<T>(128);
    
                this.head.next = inserted;
                inserted.prev = this.head;
    
                inserted.next = first;
                first.prev = inserted;
    
                first = inserted;
            }
            first.unshift(val);
            this._size++;
        }
    
        shift(): T | undefined {
            if (this.head.next === this.tail) return undefined;
            const first = this.head.next!;
            const value = first.shift();
            if (first.isEmpty()) {
                this.head.next = first.next;
                first.next!.prev = this.head;
            }
            this._size--;
            return value;
        }
    
        front(): T | undefined {
            if (this._size === 0) return undefined;
            return this.head.next!.front();
        }
    
        *values(): Generator<T, void, undefined> {
            let node = this.head.next!;
            while (node !== this.tail) {
                for (const value of node.values()) yield value;
                node = node.next!;
            }
        }
    }
    
    

All Problems

All Solutions