Welcome to Subscribe On Youtube
1216. Valid Palindrome III
Description
Given a string s
and an integer k
, return true
if s
is a k
-palindrome.
A string is k
-palindrome if it can be transformed into a palindrome by removing at most k
characters from it.
Example 1:
Input: s = "abcdeca", k = 2 Output: true Explanation: Remove 'b' and 'e' characters.
Example 2:
Input: s = "abbababa", k = 1 Output: true
Constraints:
1 <= s.length <= 1000
s
consists of only lowercase English letters.1 <= k <= s.length
Solutions
Solution 1: Dynamic Programming
The problem requires us to remove at most $k$ characters to make the remaining string a palindrome. This can be transformed into finding the longest palindromic subsequence.
We define $f[i][j]$ as the length of the longest palindromic subsequence in the substring $s[i..j]$. Initially, we have $f[i][i] = 1$ for all $i$, since each single character is a palindrome.
If $s[i] = s[j]$, then we have $f[i][j] = f[i+1][j-1] + 2$, since we can add both $s[i]$ and $s[j]$ to the longest palindromic subsequence of $s[i+1..j-1]$.
If $s[i] \neq s[j]$, then we have $f[i][j] = \max(f[i+1][j], f[i][j-1])$, since we need to remove either $s[i]$ or $s[j]$ to make the remaining substring a palindrome.
Finally, we check whether there exists $f[i][j] + k \geq n$, where $n$ is the length of the string $s$. If so, it means that we can remove at most $k$ characters to make the remaining string a palindrome.
The time complexity is $O(n^2)$, and the space complexity is $O(n^2)$. Here, $n$ is the length of the string $s$.
-
class Solution { public boolean isValidPalindrome(String s, int k) { int n = s.length(); int[][] f = new int[n][n]; for (int i = 0; i < n; ++i) { f[i][i] = 1; } for (int i = n - 2; i >= 0; --i) { for (int j = i + 1; j < n; ++j) { if (s.charAt(i) == s.charAt(j)) { f[i][j] = f[i + 1][j - 1] + 2; } else { f[i][j] = Math.max(f[i + 1][j], f[i][j - 1]); } if (f[i][j] + k >= n) { return true; } } } return false; } }
-
class Solution { public: bool isValidPalindrome(string s, int k) { int n = s.length(); int f[n][n]; memset(f, 0, sizeof f); for (int i = 0; i < n; ++i) { f[i][i] = 1; } for (int i = n - 2; i >= 0; --i) { for (int j = i + 1; j < n; ++j) { if (s[i] == s[j]) { f[i][j] = f[i + 1][j - 1] + 2; } else { f[i][j] = max(f[i + 1][j], f[i][j - 1]); } if (f[i][j] + k >= n) { return true; } } } return false; } };
-
class Solution: def isValidPalindrome(self, s: str, k: int) -> bool: n = len(s) f = [[0] * n for _ in range(n)] for i in range(n): f[i][i] = 1 for i in range(n - 2, -1, -1): for j in range(i + 1, n): if s[i] == s[j]: f[i][j] = f[i + 1][j - 1] + 2 else: f[i][j] = max(f[i + 1][j], f[i][j - 1]) if f[i][j] + k >= n: return True return False
-
func isValidPalindrome(s string, k int) bool { n := len(s) f := make([][]int, n) for i := range f { f[i] = make([]int, n) f[i][i] = 1 } for i := n - 2; i >= 0; i-- { for j := i + 1; j < n; j++ { if s[i] == s[j] { f[i][j] = f[i+1][j-1] + 2 } else { f[i][j] = max(f[i+1][j], f[i][j-1]) } if f[i][j]+k >= n { return true } } } return false }
-
function isValidPalindrome(s: string, k: number): boolean { const n = s.length; const f: number[][] = Array.from({ length: n }, () => Array.from({ length: n }, () => 0)); for (let i = 0; i < n; ++i) { f[i][i] = 1; } for (let i = n - 2; ~i; --i) { for (let j = i + 1; j < n; ++j) { if (s[i] === s[j]) { f[i][j] = f[i + 1][j - 1] + 2; } else { f[i][j] = Math.max(f[i + 1][j], f[i][j - 1]); } if (f[i][j] + k >= n) { return true; } } } return false; }
-
impl Solution { pub fn is_valid_palindrome(s: String, k: i32) -> bool { let s = s.as_bytes(); let n = s.len(); let mut f = vec![vec![0; n]; n]; for i in 0..n { f[i][i] = 1; } for i in (0..n - 2).rev() { for j in i + 1..n { if s[i] == s[j] { f[i][j] = f[i + 1][j - 1] + 2; } else { f[i][j] = std::cmp::max(f[i + 1][j], f[i][j - 1]); } if f[i][j] + k >= (n as i32) { return true; } } } false } }