Welcome to Subscribe On Youtube
1162. As Far from Land as Possible
Description
Given an n x n
grid
containing only values 0
and 1
, where 0
represents water and 1
represents land, find a water cell such that its distance to the nearest land cell is maximized, and return the distance. If no land or water exists in the grid, return -1
.
The distance used in this problem is the Manhattan distance: the distance between two cells (x0, y0)
and (x1, y1)
is |x0 - x1| + |y0 - y1|
.
Example 1:
Input: grid = [[1,0,1],[0,0,0],[1,0,1]] Output: 2 Explanation: The cell (1, 1) is as far as possible from all the land with distance 2.
Example 2:
Input: grid = [[1,0,0],[0,0,0],[0,0,0]] Output: 4 Explanation: The cell (2, 2) is as far as possible from all the land with distance 4.
Constraints:
n == grid.length
n == grid[i].length
1 <= n <= 100
grid[i][j]
is0
or1
Solutions
Solution 1: BFS
We can add all land cells to the queue
Otherwise, we start BFS from the land cells. Define the initial step count
In each round of search, we spread all cells in the queue in four directions. If a cell is an ocean cell, we mark it as a land cell and add it to the queue. After a round of spreading, we increase the step count by
Finally, we return the step count
The time complexity is
-
class Solution { public int maxDistance(int[][] grid) { int n = grid.length; Deque<int[]> q = new ArrayDeque<>(); for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { if (grid[i][j] == 1) { q.offer(new int[] {i, j}); } } } int ans = -1; if (q.isEmpty() || q.size() == n * n) { return ans; } int[] dirs = {-1, 0, 1, 0, -1}; while (!q.isEmpty()) { for (int i = q.size(); i > 0; --i) { int[] p = q.poll(); for (int k = 0; k < 4; ++k) { int x = p[0] + dirs[k], y = p[1] + dirs[k + 1]; if (x >= 0 && x < n && y >= 0 && y < n && grid[x][y] == 0) { grid[x][y] = 1; q.offer(new int[] {x, y}); } } } ++ans; } return ans; } }
-
class Solution { public: int maxDistance(vector<vector<int>>& grid) { int n = grid.size(); queue<pair<int, int>> q; for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { if (grid[i][j]) { q.emplace(i, j); } } } int ans = -1; if (q.empty() || q.size() == n * n) { return ans; } int dirs[5] = {-1, 0, 1, 0, -1}; while (!q.empty()) { for (int m = q.size(); m; --m) { auto [i, j] = q.front(); q.pop(); for (int k = 0; k < 4; ++k) { int x = i + dirs[k], y = j + dirs[k + 1]; if (x >= 0 && x < n && y >= 0 && y < n && !grid[x][y]) { grid[x][y] = 1; q.emplace(x, y); } } } ++ans; } return ans; } };
-
class Solution: def maxDistance(self, grid: List[List[int]]) -> int: n = len(grid) q = deque((i, j) for i in range(n) for j in range(n) if grid[i][j]) ans = -1 if len(q) in (0, n * n): return ans dirs = (-1, 0, 1, 0, -1) while q: for _ in range(len(q)): i, j = q.popleft() for a, b in pairwise(dirs): x, y = i + a, j + b if 0 <= x < n and 0 <= y < n and grid[x][y] == 0: grid[x][y] = 1 q.append((x, y)) ans += 1 return ans
-
func maxDistance(grid [][]int) int { n := len(grid) q := [][2]int{} for i, row := range grid { for j, v := range row { if v == 1 { q = append(q, [2]int{i, j}) } } } ans := -1 if len(q) == 0 || len(q) == n*n { return ans } dirs := [5]int{-1, 0, 1, 0, -1} for len(q) > 0 { for i := len(q); i > 0; i-- { p := q[0] q = q[1:] for k := 0; k < 4; k++ { x, y := p[0]+dirs[k], p[1]+dirs[k+1] if x >= 0 && x < n && y >= 0 && y < n && grid[x][y] == 0 { grid[x][y] = 1 q = append(q, [2]int{x, y}) } } } ans++ } return ans }
-
function maxDistance(grid: number[][]): number { const n = grid.length; const q: [number, number][] = []; for (let i = 0; i < n; ++i) { for (let j = 0; j < n; ++j) { if (grid[i][j] === 1) { q.push([i, j]); } } } let ans = -1; if (q.length === 0 || q.length === n * n) { return ans; } const dirs: number[] = [-1, 0, 1, 0, -1]; while (q.length > 0) { for (let m = q.length; m; --m) { const [i, j] = q.shift()!; for (let k = 0; k < 4; ++k) { const x = i + dirs[k]; const y = j + dirs[k + 1]; if (x >= 0 && x < n && y >= 0 && y < n && grid[x][y] === 0) { grid[x][y] = 1; q.push([x, y]); } } } ++ans; } return ans; }