Welcome to Subscribe On Youtube
1155. Number of Dice Rolls With Target Sum
Description
You have n
dice, and each dice has k
faces numbered from 1
to k
.
Given three integers n
, k
, and target
, return the number of possible ways (out of the kn
total ways) to roll the dice, so the sum of the face-up numbers equals target
. Since the answer may be too large, return it modulo 109 + 7
.
Example 1:
Input: n = 1, k = 6, target = 3 Output: 1 Explanation: You throw one die with 6 faces. There is only one way to get a sum of 3.
Example 2:
Input: n = 2, k = 6, target = 7 Output: 6 Explanation: You throw two dice, each with 6 faces. There are 6 ways to get a sum of 7: 1+6, 2+5, 3+4, 4+3, 5+2, 6+1.
Example 3:
Input: n = 30, k = 30, target = 500 Output: 222616187 Explanation: The answer must be returned modulo 109 + 7.
Constraints:
1 <= n, k <= 30
1 <= target <= 1000
Solutions
Solution 1: Dynamic Programming
We define $f[i][j]$ as the number of ways to get a sum of $j$ using $i$ dice. Then, we can obtain the following state transition equation:
\[f[i][j] = \sum_{h=1}^{\min(j, k)} f[i-1][j-h]\]where $h$ represents the number of points on the $i$-th die.
Initially, we have $f[0][0] = 1$, and the final answer is $f[n][target]$.
The time complexity is $O(n \times k \times target)$, and the space complexity is $O(n \times target)$.
We notice that the state $f[i][j]$ only depends on $f[i-1][]$, so we can use a rolling array to optimize the space complexity to $O(target)$.
-
class Solution { public int numRollsToTarget(int n, int k, int target) { final int mod = (int) 1e9 + 7; int[][] f = new int[n + 1][target + 1]; f[0][0] = 1; for (int i = 1; i <= n; ++i) { for (int j = 1; j <= Math.min(target, i * k); ++j) { for (int h = 1; h <= Math.min(j, k); ++h) { f[i][j] = (f[i][j] + f[i - 1][j - h]) % mod; } } } return f[n][target]; } }
-
class Solution { public: int numRollsToTarget(int n, int k, int target) { const int mod = 1e9 + 7; int f[n + 1][target + 1]; memset(f, 0, sizeof f); f[0][0] = 1; for (int i = 1; i <= n; ++i) { for (int j = 1; j <= min(target, i * k); ++j) { for (int h = 1; h <= min(j, k); ++h) { f[i][j] = (f[i][j] + f[i - 1][j - h]) % mod; } } } return f[n][target]; } };
-
class Solution: def numRollsToTarget(self, n: int, k: int, target: int) -> int: f = [[0] * (target + 1) for _ in range(n + 1)] f[0][0] = 1 mod = 10**9 + 7 for i in range(1, n + 1): for j in range(1, min(i * k, target) + 1): for h in range(1, min(j, k) + 1): f[i][j] = (f[i][j] + f[i - 1][j - h]) % mod return f[n][target]
-
func numRollsToTarget(n int, k int, target int) int { const mod int = 1e9 + 7 f := make([][]int, n+1) for i := range f { f[i] = make([]int, target+1) } f[0][0] = 1 for i := 1; i <= n; i++ { for j := 1; j <= min(target, i*k); j++ { for h := 1; h <= min(j, k); h++ { f[i][j] = (f[i][j] + f[i-1][j-h]) % mod } } } return f[n][target] }
-
function numRollsToTarget(n: number, k: number, target: number): number { const f = Array.from({ length: n + 1 }, () => Array(target + 1).fill(0)); f[0][0] = 1; const mod = 1e9 + 7; for (let i = 1; i <= n; ++i) { for (let j = 1; j <= Math.min(i * k, target); ++j) { for (let h = 1; h <= Math.min(j, k); ++h) { f[i][j] = (f[i][j] + f[i - 1][j - h]) % mod; } } } return f[n][target]; }
-
impl Solution { pub fn num_rolls_to_target(n: i32, k: i32, target: i32) -> i32 { let _mod = 1_000_000_007; let n = n as usize; let k = k as usize; let target = target as usize; let mut f = vec![vec![0; target + 1]; n + 1]; f[0][0] = 1; for i in 1..=n { for j in 1..=target.min(i * k) { for h in 1..=j.min(k) { f[i][j] = (f[i][j] + f[i - 1][j - h]) % _mod; } } } f[n][target] } }