Welcome to Subscribe On Youtube
1143. Longest Common Subsequence
Description
Given two strings text1 and text2, return the length of their longest common subsequence. If there is no common subsequence, return 0.
A subsequence of a string is a new string generated from the original string with some characters (can be none) deleted without changing the relative order of the remaining characters.
- For example,
"ace"is a subsequence of"abcde".
A common subsequence of two strings is a subsequence that is common to both strings.
Example 1:
Input: text1 = "abcde", text2 = "ace" Output: 3 Explanation: The longest common subsequence is "ace" and its length is 3.
Example 2:
Input: text1 = "abc", text2 = "abc" Output: 3 Explanation: The longest common subsequence is "abc" and its length is 3.
Example 3:
Input: text1 = "abc", text2 = "def" Output: 0 Explanation: There is no such common subsequence, so the result is 0.
Constraints:
1 <= text1.length, text2.length <= 1000text1andtext2consist of only lowercase English characters.
Solutions
Solution 1: Dynamic Programming
We define $f[i][j]$ as the length of the longest common subsequence of the first $i$ characters of $text1$ and the first $j$ characters of $text2$. Therefore, the answer is $f[m][n]$, where $m$ and $n$ are the lengths of $text1$ and $text2$, respectively.
If the $i$th character of $text1$ and the $j$th character of $text2$ are the same, then $f[i][j] = f[i - 1][j - 1] + 1$; if the $i$th character of $text1$ and the $j$th character of $text2$ are different, then $f[i][j] = max(f[i - 1][j], f[i][j - 1])$. The state transition equation is:
\[f[i][j] = \begin{cases} f[i - 1][j - 1] + 1, & \text{if } text1[i - 1] = text2[j - 1] \\ \max(f[i - 1][j], f[i][j - 1]), & \text{if } text1[i - 1] \neq text2[j - 1] \end{cases}\]The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. Here, $m$ and $n$ are the lengths of $text1$ and $text2$, respectively.
-
class Solution { public int longestCommonSubsequence(String text1, String text2) { int m = text1.length(), n = text2.length(); int[][] f = new int[m + 1][n + 1]; for (int i = 1; i <= m; ++i) { for (int j = 1; j <= n; ++j) { if (text1.charAt(i - 1) == text2.charAt(j - 1)) { f[i][j] = f[i - 1][j - 1] + 1; } else { f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]); } } } return f[m][n]; } } -
class Solution { public: int longestCommonSubsequence(string text1, string text2) { int m = text1.size(), n = text2.size(); int f[m + 1][n + 1]; memset(f, 0, sizeof f); for (int i = 1; i <= m; ++i) { for (int j = 1; j <= n; ++j) { if (text1[i - 1] == text2[j - 1]) { f[i][j] = f[i - 1][j - 1] + 1; } else { f[i][j] = max(f[i - 1][j], f[i][j - 1]); } } } return f[m][n]; } }; -
class Solution: def longestCommonSubsequence(self, text1: str, text2: str) -> int: m, n = len(text1), len(text2) f = [[0] * (n + 1) for _ in range(m + 1)] for i in range(1, m + 1): for j in range(1, n + 1): if text1[i - 1] == text2[j - 1]: f[i][j] = f[i - 1][j - 1] + 1 else: f[i][j] = max(f[i - 1][j], f[i][j - 1]) return f[m][n] -
func longestCommonSubsequence(text1 string, text2 string) int { m, n := len(text1), len(text2) f := make([][]int, m+1) for i := range f { f[i] = make([]int, n+1) } for i := 1; i <= m; i++ { for j := 1; j <= n; j++ { if text1[i-1] == text2[j-1] { f[i][j] = f[i-1][j-1] + 1 } else { f[i][j] = max(f[i-1][j], f[i][j-1]) } } } return f[m][n] } -
function longestCommonSubsequence(text1: string, text2: string): number { const m = text1.length; const n = text2.length; const f = Array.from({ length: m + 1 }, () => Array(n + 1).fill(0)); for (let i = 1; i <= m; i++) { for (let j = 1; j <= n; j++) { if (text1[i - 1] === text2[j - 1]) { f[i][j] = f[i - 1][j - 1] + 1; } else { f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]); } } } return f[m][n]; } -
/** * @param {string} text1 * @param {string} text2 * @return {number} */ var longestCommonSubsequence = function (text1, text2) { const m = text1.length; const n = text2.length; const f = Array.from({ length: m + 1 }, () => Array(n + 1).fill(0)); for (let i = 1; i <= m; ++i) { for (let j = 1; j <= n; ++j) { if (text1[i - 1] == text2[j - 1]) { f[i][j] = f[i - 1][j - 1] + 1; } else { f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]); } } } return f[m][n]; }; -
public class Solution { public int LongestCommonSubsequence(string text1, string text2) { int m = text1.Length, n = text2.Length; int[,] f = new int[m + 1, n + 1]; for (int i = 1; i <= m; ++i) { for (int j = 1; j <= n; ++j) { if (text1[i - 1] == text2[j - 1]) { f[i, j] = f[i - 1, j - 1] + 1; } else { f[i, j] = Math.Max(f[i - 1, j], f[i, j - 1]); } } } return f[m, n]; } } -
impl Solution { pub fn longest_common_subsequence(text1: String, text2: String) -> i32 { let (m, n) = (text1.len(), text2.len()); let (text1, text2) = (text1.as_bytes(), text2.as_bytes()); let mut f = vec![vec![0; n + 1]; m + 1]; for i in 1..=m { for j in 1..=n { f[i][j] = if text1[i - 1] == text2[j - 1] { f[i - 1][j - 1] + 1 } else { f[i - 1][j].max(f[i][j - 1]) }; } } f[m][n] } }