Welcome to Subscribe On Youtube
1115. Print FooBar Alternately
Description
Suppose you are given the following code:
class FooBar { public void foo() { for (int i = 0; i < n; i++) { print("foo"); } } public void bar() { for (int i = 0; i < n; i++) { print("bar"); } } }
The same instance of FooBar
will be passed to two different threads:
- thread
A
will callfoo()
, while - thread
B
will callbar()
.
Modify the given program to output "foobar"
n
times.
Example 1:
Input: n = 1 Output: "foobar" Explanation: There are two threads being fired asynchronously. One of them calls foo(), while the other calls bar(). "foobar" is being output 1 time.
Example 2:
Input: n = 2 Output: "foobarfoobar" Explanation: "foobar" is being output 2 times.
Constraints:
1 <= n <= 1000
Solutions
Solution 1: Multithreading + Semaphore
We use two semaphores $f$ and $b$ to control the execution order of the two threads, where $f$ is initially set to $1$ and $b$ is set to $0$, indicating that thread $A$ executes first.
When thread $A$ executes, it first performs the $acquire$ operation on $f$, which changes the value of $f$ to $0$. Thread $A$ then gains the right to use $f$ and can execute the $foo$ function. After that, it performs the $release$ operation on $b$, changing the value of $b$ to $1$. This allows thread $B$ to gain the right to use $b$ and execute the $bar$ function.
When thread $B$ executes, it first performs the $acquire$ operation on $b$, which changes the value of $b$ to $0$. Thread $B$ then gains the right to use $b$ and can execute the $bar$ function. After that, it performs the $release$ operation on $f$, changing the value of $f$ to $1$. This allows thread $A$ to gain the right to use $f$ and execute the $foo$ function.
Therefore, we only need to loop $n$ times, each time executing the $foo$ and $bar$ functions, first performing the $acquire$ operation, and then the $release$ operation.
The time complexity is $O(n)$, and the space complexity is $O(1)$.
-
class FooBar { private int n; private Semaphore f = new Semaphore(1); private Semaphore b = new Semaphore(0); public FooBar(int n) { this.n = n; } public void foo(Runnable printFoo) throws InterruptedException { for (int i = 0; i < n; i++) { f.acquire(1); // printFoo.run() outputs "foo". Do not change or remove this line. printFoo.run(); b.release(1); } } public void bar(Runnable printBar) throws InterruptedException { for (int i = 0; i < n; i++) { b.acquire(1); // printBar.run() outputs "bar". Do not change or remove this line. printBar.run(); f.release(1); } } }
-
#include <semaphore.h> class FooBar { private: int n; sem_t f, b; public: FooBar(int n) { this->n = n; sem_init(&f, 0, 1); sem_init(&b, 0, 0); } void foo(function<void()> printFoo) { for (int i = 0; i < n; i++) { sem_wait(&f); // printFoo() outputs "foo". Do not change or remove this line. printFoo(); sem_post(&b); } } void bar(function<void()> printBar) { for (int i = 0; i < n; i++) { sem_wait(&b); // printBar() outputs "bar". Do not change or remove this line. printBar(); sem_post(&f); } } };
-
from threading import Semaphore class FooBar: def __init__(self, n): self.n = n self.f = Semaphore(1) self.b = Semaphore(0) def foo(self, printFoo: "Callable[[], None]") -> None: for _ in range(self.n): self.f.acquire() # printFoo() outputs "foo". Do not change or remove this line. printFoo() self.b.release() def bar(self, printBar: "Callable[[], None]") -> None: for _ in range(self.n): self.b.acquire() # printBar() outputs "bar". Do not change or remove this line. printBar() self.f.release() ############# class FooBar: def __init__(self, n): self.n = n self.fooLock = threading.Lock() self.barLock = threading.Lock() self.barLock.acquire() def foo(self, printFoo: 'Callable[[], None]') -> None: for i in range(self.n): self.fooLock.acquire() printFoo() self.barLock.release() def bar(self, printBar: 'Callable[[], None]') -> None: for i in range(self.n): self.barLock.acquire() printBar() self.fooLock.release()