Welcome to Subscribe On Youtube

Formatted question description: https://leetcode.ca/all/1102.html

1102. Path With Maximum Minimum Value

Level

Medium

Description

Given a matrix of integers A with R rows and C columns, find the maximum score of a path starting at [0,0] and ending at [R-1,C-1].

The score of a path is the minimum value in that path. For example, the value of the path 8 → 4 → 5 → 9 is 4.

A path moves some number of times from one visited cell to any neighbouring unvisited cell in one of the 4 cardinal directions (north, east, west, south).

Example 1:

Image text

Input: [[5,4,5],[1,2,6],[7,4,6]]

Output: 4

Explanation: The path with the maximum score is highlighted in yellow.

Example 2:

Image text

Input: [[2,2,1,2,2,2],[1,2,2,2,1,2]]

Output: 2

Example 3:

Image text

Input: [[3,4,6,3,4],[0,2,1,1,7],[8,8,3,2,7],[3,2,4,9,8],[4,1,2,0,0],[4,6,5,4,3]]

Output: 3

Note:

  1. 1 <= R, C <= 100
  2. 0 <= A[i][j] <= 10^9

Solution

For each cell in the matrix, store its row, column and score in the path, where score in the path is the minimum value in the path. Use a priority queue to store the cells, where the cell with the maximum score is polled first. Each time poll a cell from the priority queue, and update its adjacent cells’ scores. Make sure that each cell is visited only once. Since a priority queue is used, it is guaranteed that each cell’s score is the maximum possible score. Finally, return the score at the bottom right corner.

  • class Solution {
        public int maximumMinimumPath(int[][] A) {
            final int WHITE = 0;
            final int GRAY = 1;
            final int BLACK = 2;
            int rows = A.length, columns = A[0].length;
            int[][] colors = new int[rows][columns];
            int[][] values = new int[rows][columns];
            int[][] directions = { {-1, 0}, {1, 0}, {0, -1}, {0, 1} };
            PriorityQueue<int[]> priorityQueue = new PriorityQueue<int[]>(new Comparator<int[]>() {
                public int compare(int[] array1, int[] array2) {
                    if (array1[2] != array2[2])
                        return array2[2] - array1[2];
                    else if (array1[0] != array2[0])
                        return array1[0] - array2[0];
                    else
                        return array1[1] - array2[1];
                }
            });
            colors[0][0] = GRAY;
            values[0][0] = A[0][0];
            priorityQueue.offer(new int[]{0, 0, values[0][0]});
            while (!priorityQueue.isEmpty()) {
                int[] cell = priorityQueue.poll();
                int row = cell[0], column = cell[1], value = cell[2];
                for (int[] direction : directions) {
                    int newRow = row + direction[0], newColumn = column + direction[1];
                    if (newRow >= 0 && newRow < rows && newColumn >= 0 && newColumn < columns && colors[newRow][newColumn] == WHITE) {
                        colors[newRow][newColumn] = GRAY;
                        values[newRow][newColumn] = Math.min(value, A[newRow][newColumn]);
                        priorityQueue.offer(new int[]{newRow, newColumn, values[newRow][newColumn]});
                    }
                }
                colors[row][column] = BLACK;
            }
            return values[rows - 1][columns - 1];
        }
    }
    
  • // OJ: https://leetcode.com/problems/path-with-maximum-minimum-value/
    // Time: O(MNlog(MN))
    // Space: O(MN)
    class Solution {
        typedef array<int, 3> T;
    public:
        int maximumMinimumPath(vector<vector<int>>& A) {
            int M = A.size(), N = A[0].size(), dirs[4][2] = { {0,1},{0,-1},{1,0},{-1,0} };
            priority_queue<T> pq;
            pq.push({A[0][0],0,0});
            A[0][0] = -1;
            while (pq.size()) {
                auto [score, x, y] = pq.top();
                pq.pop();
                if (x == M - 1 && y == N - 1) return score;
                for (auto &[dx, dy] : dirs) {
                    int a = x + dx, b = y + dy;
                    if (a < 0 || a >= M || b < 0 || b >= N || A[a][b] == -1) continue;
                    pq.push({ min(score, A[a][b]), a, b });
                    A[a][b] = -1;
                }
            }
            return -1;
        }
    };
    
  • class Solution:
        def maximumMinimumPath(self, grid: List[List[int]]) -> int:
            def find(x):
                if p[x] != x:
                    p[x] = find(p[x])
                return p[x]
    
            m, n = len(grid), len(grid[0])
            p = list(range(m * n))
            ans = min(grid[0][0], grid[-1][-1])
            vis = {(0, 0), (m - 1, n - 1)}
            scores = [[grid[i][j], i, j] for i in range(m) for j in range(n)]
            scores.sort()
            while find(0) != find(m * n - 1):
                score, i, j = scores.pop()
                ans = min(ans, score)
                vis.add((i, j))
                for a, b in [[0, 1], [0, -1], [1, 0], [-1, 0]]:
                    x, y = i + a, j + b
                    if 0 <= x < m and 0 <= y < n and (x, y) in vis:
                        p[find(x * n + y)] = find(i * n + j)
            return ans
    
    
    

All Problems

All Solutions