Welcome to Subscribe On Youtube
1099. Two Sum Less Than K
Description
Given an array nums
of integers and integer k
, return the maximum sum
such that there exists i < j
with nums[i] + nums[j] = sum
and sum < k
. If no i
, j
exist satisfying this equation, return -1
.
Example 1:
Input: nums = [34,23,1,24,75,33,54,8], k = 60 Output: 58 Explanation: We can use 34 and 24 to sum 58 which is less than 60.
Example 2:
Input: nums = [10,20,30], k = 15 Output: -1 Explanation: In this case it is not possible to get a pair sum less that 15.
Constraints:
1 <= nums.length <= 100
1 <= nums[i] <= 1000
1 <= k <= 2000
Solutions
Solution 1: Sorting + Binary Search
We can first sort the array $nums$, and initialize the answer as $-1$.
Next, we enumerate each element $nums[i]$ in the array, and find the maximum $nums[j]$ in the array that satisfies $nums[j] + nums[i] < k$. Here, we can use binary search to speed up the search process. If we find such a $nums[j]$, then we can update the answer, i.e., $ans = \max(ans, nums[i] + nums[j])$.
After the enumeration ends, return the answer.
The time complexity is $O(n \times \log n)$, and the space complexity is $O(\log n)$. Here, $n$ is the length of the array $nums$.
Solution 2: Sorting + Two Pointers
Similar to Solution 1, we can first sort the array $nums$, and initialize the answer as $-1$.
Next, we use two pointers $i$ and $j$ to point to the left and right ends of the array, respectively. Each time we judge whether $s = nums[i] + nums[j]$ is less than $k$. If it is less than $k$, then we can update the answer, i.e., $ans = \max(ans, s)$, and move $i$ one step to the right, otherwise move $j$ one step to the left.
After the enumeration ends, return the answer.
The time complexity is $O(n \times \log n)$, and the space complexity is $O(\log n)$. Here, $n$ is the length of the array $nums$.
-
class Solution { public int twoSumLessThanK(int[] nums, int k) { Arrays.sort(nums); int ans = -1; int n = nums.length; for (int i = 0; i < n; ++i) { int j = search(nums, k - nums[i], i + 1, n) - 1; if (i < j) { ans = Math.max(ans, nums[i] + nums[j]); } } return ans; } private int search(int[] nums, int x, int l, int r) { while (l < r) { int mid = (l + r) >> 1; if (nums[mid] >= x) { r = mid; } else { l = mid + 1; } } return l; } }
-
class Solution { public: int twoSumLessThanK(vector<int>& nums, int k) { sort(nums.begin(), nums.end()); int ans = -1, n = nums.size(); for (int i = 0; i < n; ++i) { int j = lower_bound(nums.begin() + i + 1, nums.end(), k - nums[i]) - nums.begin() - 1; if (i < j) { ans = max(ans, nums[i] + nums[j]); } } return ans; } };
-
class Solution: def twoSumLessThanK(self, nums: List[int], k: int) -> int: nums.sort() ans = -1 for i, x in enumerate(nums): j = bisect_left(nums, k - x, lo=i + 1) - 1 if i < j: ans = max(ans, x + nums[j]) return ans
-
func twoSumLessThanK(nums []int, k int) int { sort.Ints(nums) ans := -1 for i, x := range nums { j := sort.SearchInts(nums[i+1:], k-x) + i if v := nums[i] + nums[j]; i < j && ans < v { ans = v } } return ans }
-
function twoSumLessThanK(nums: number[], k: number): number { nums.sort((a, b) => a - b); let ans = -1; for (let i = 0, j = nums.length - 1; i < j; ) { const s = nums[i] + nums[j]; if (s < k) { ans = Math.max(ans, s); ++i; } else { --j; } } return ans; }