Welcome to Subscribe On Youtube

1091. Shortest Path in Binary Matrix

Description

Given an n x n binary matrix grid, return the length of the shortest clear path in the matrix. If there is no clear path, return -1.

A clear path in a binary matrix is a path from the top-left cell (i.e., (0, 0)) to the bottom-right cell (i.e., (n - 1, n - 1)) such that:

  • All the visited cells of the path are 0.
  • All the adjacent cells of the path are 8-directionally connected (i.e., they are different and they share an edge or a corner).

The length of a clear path is the number of visited cells of this path.

 

Example 1:

Input: grid = [[0,1],[1,0]]
Output: 2

Example 2:

Input: grid = [[0,0,0],[1,1,0],[1,1,0]]
Output: 4

Example 3:

Input: grid = [[1,0,0],[1,1,0],[1,1,0]]
Output: -1

 

Constraints:

  • n == grid.length
  • n == grid[i].length
  • 1 <= n <= 100
  • grid[i][j] is 0 or 1

Solutions

BFS.

  • class Solution {
        public int shortestPathBinaryMatrix(int[][] grid) {
            if (grid[0][0] == 1) {
                return -1;
            }
            int n = grid.length;
            grid[0][0] = 1;
            Deque<int[]> q = new ArrayDeque<>();
            q.offer(new int[] {0, 0});
            for (int ans = 1; !q.isEmpty(); ++ans) {
                for (int k = q.size(); k > 0; --k) {
                    var p = q.poll();
                    int i = p[0], j = p[1];
                    if (i == n - 1 && j == n - 1) {
                        return ans;
                    }
                    for (int x = i - 1; x <= i + 1; ++x) {
                        for (int y = j - 1; y <= j + 1; ++y) {
                            if (x >= 0 && x < n && y >= 0 && y < n && grid[x][y] == 0) {
                                grid[x][y] = 1;
                                q.offer(new int[] {x, y});
                            }
                        }
                    }
                }
            }
            return -1;
        }
    }
    
  • class Solution {
    public:
        int shortestPathBinaryMatrix(vector<vector<int>>& grid) {
            if (grid[0][0]) {
                return -1;
            }
            int n = grid.size();
            grid[0][0] = 1;
            queue<pair<int, int>> q;
            q.emplace(0, 0);
            for (int ans = 1; !q.empty(); ++ans) {
                for (int k = q.size(); k; --k) {
                    auto [i, j] = q.front();
                    q.pop();
                    if (i == n - 1 && j == n - 1) {
                        return ans;
                    }
                    for (int x = i - 1; x <= i + 1; ++x) {
                        for (int y = j - 1; y <= j + 1; ++y) {
                            if (x >= 0 && x < n && y >= 0 && y < n && !grid[x][y]) {
                                grid[x][y] = 1;
                                q.emplace(x, y);
                            }
                        }
                    }
                }
            }
            return -1;
        }
    };
    
  • class Solution:
        def shortestPathBinaryMatrix(self, grid: List[List[int]]) -> int:
            if grid[0][0]:
                return -1
            n = len(grid)
            grid[0][0] = 1
            q = deque([(0, 0)])
            ans = 1
            while q:
                for _ in range(len(q)):
                    i, j = q.popleft()
                    if i == j == n - 1:
                        return ans
                    for x in range(i - 1, i + 2):
                        for y in range(j - 1, j + 2):
                            if 0 <= x < n and 0 <= y < n and grid[x][y] == 0:
                                grid[x][y] = 1
                                q.append((x, y))
                ans += 1
            return -1
    
    
  • func shortestPathBinaryMatrix(grid [][]int) int {
    	if grid[0][0] == 1 {
    		return -1
    	}
    	n := len(grid)
    	grid[0][0] = 1
    	q := [][2]int{ {0, 0} }
    	for ans := 1; len(q) > 0; ans++ {
    		for k := len(q); k > 0; k-- {
    			p := q[0]
    			i, j := p[0], p[1]
    			q = q[1:]
    			if i == n-1 && j == n-1 {
    				return ans
    			}
    			for x := i - 1; x <= i+1; x++ {
    				for y := j - 1; y <= j+1; y++ {
    					if x >= 0 && x < n && y >= 0 && y < n && grid[x][y] == 0 {
    						grid[x][y] = 1
    						q = append(q, [2]int{x, y})
    					}
    				}
    			}
    		}
    	}
    	return -1
    }
    
  • function shortestPathBinaryMatrix(grid: number[][]): number {
        if (grid[0][0]) {
            return -1;
        }
        const n = grid.length;
        grid[0][0] = 1;
        let q: number[][] = [[0, 0]];
        for (let ans = 1; q.length > 0; ++ans) {
            const nq: number[][] = [];
            for (const [i, j] of q) {
                if (i === n - 1 && j === n - 1) {
                    return ans;
                }
                for (let x = i - 1; x <= i + 1; ++x) {
                    for (let y = j - 1; y <= j + 1; ++y) {
                        if (x >= 0 && x < n && y >= 0 && y < n && !grid[x][y]) {
                            grid[x][y] = 1;
                            nq.push([x, y]);
                        }
                    }
                }
            }
            q = nq;
        }
        return -1;
    }
    
    
  • use std::collections::VecDeque;
    impl Solution {
        pub fn shortest_path_binary_matrix(mut grid: Vec<Vec<i32>>) -> i32 {
            let n = grid.len();
            let mut queue = VecDeque::new();
            queue.push_back([0, 0]);
            let mut res = 0;
            while !queue.is_empty() {
                res += 1;
                for _ in 0..queue.len() {
                    let [i, j] = queue.pop_front().unwrap();
                    if grid[i][j] == 1 {
                        continue;
                    }
                    if i == n - 1 && j == n - 1 {
                        return res;
                    }
                    grid[i][j] = 1;
                    for x in -1..=1 {
                        for y in -1..=1 {
                            let x = x + (i as i32);
                            let y = y + (j as i32);
                            if x < 0 || x == (n as i32) || y < 0 || y == (n as i32) {
                                continue;
                            }
                            queue.push_back([x as usize, y as usize]);
                        }
                    }
                }
            }
            -1
        }
    }
    
    

All Problems

All Solutions