Welcome to Subscribe On Youtube

1063. Number of Valid Subarrays

Description

Given an integer array nums, return the number of non-empty subarrays with the leftmost element of the subarray not larger than other elements in the subarray.

A subarray is a contiguous part of an array.

 

Example 1:

Input: nums = [1,4,2,5,3]
Output: 11
Explanation: There are 11 valid subarrays: [1],[4],[2],[5],[3],[1,4],[2,5],[1,4,2],[2,5,3],[1,4,2,5],[1,4,2,5,3].

Example 2:

Input: nums = [3,2,1]
Output: 3
Explanation: The 3 valid subarrays are: [3],[2],[1].

Example 3:

Input: nums = [2,2,2]
Output: 6
Explanation: There are 6 valid subarrays: [2],[2],[2],[2,2],[2,2],[2,2,2].

 

Constraints:

  • 1 <= nums.length <= 5 * 104
  • 0 <= nums[i] <= 105

Solutions

  • class Solution {
        public int validSubarrays(int[] nums) {
            int n = nums.length;
            int[] right = new int[n];
            Arrays.fill(right, n);
            Deque<Integer> stk = new ArrayDeque<>();
            for (int i = n - 1; i >= 0; --i) {
                while (!stk.isEmpty() && nums[stk.peek()] >= nums[i]) {
                    stk.pop();
                }
                if (!stk.isEmpty()) {
                    right[i] = stk.peek();
                }
                stk.push(i);
            }
            int ans = 0;
            for (int i = 0; i < n; ++i) {
                ans += right[i] - i;
            }
            return ans;
        }
    }
    
  • class Solution {
    public:
        int validSubarrays(vector<int>& nums) {
            int n = nums.size();
            vector<int> right(n, n);
            stack<int> stk;
            for (int i = n - 1; ~i; --i) {
                while (stk.size() && nums[stk.top()] >= nums[i]) {
                    stk.pop();
                }
                if (stk.size()) {
                    right[i] = stk.top();
                }
                stk.push(i);
            }
            int ans = 0;
            for (int i = 0; i < n; ++i) {
                ans += right[i] - i;
            }
            return ans;
        }
    };
    
  • class Solution:
        def validSubarrays(self, nums: List[int]) -> int:
            n = len(nums)
            right = [n] * n
            stk = []
            for i in range(n - 1, -1, -1):
                while stk and nums[stk[-1]] >= nums[i]:
                    stk.pop()
                if stk:
                    right[i] = stk[-1]
                stk.append(i)
            return sum(j - i for i, j in enumerate(right))
    
    
  • func validSubarrays(nums []int) (ans int) {
    	n := len(nums)
    	right := make([]int, n)
    	for i := range right {
    		right[i] = n
    	}
    	stk := []int{}
    	for i := n - 1; i >= 0; i-- {
    		for len(stk) > 0 && nums[stk[len(stk)-1]] >= nums[i] {
    			stk = stk[:len(stk)-1]
    		}
    		if len(stk) > 0 {
    			right[i] = stk[len(stk)-1]
    		}
    		stk = append(stk, i)
    	}
    	for i, j := range right {
    		ans += j - i
    	}
    	return
    }
    
  • function validSubarrays(nums: number[]): number {
        const n = nums.length;
        const right: number[] = Array(n).fill(n);
        const stk: number[] = [];
        for (let i = n - 1; ~i; --i) {
            while (stk.length && nums[stk.at(-1)] >= nums[i]) {
                stk.pop();
            }
            if (stk.length) {
                right[i] = stk.at(-1)!;
            }
            stk.push(i);
        }
        let ans = 0;
        for (let i = 0; i < n; ++i) {
            ans += right[i] - i;
        }
        return ans;
    }
    
    

All Problems

All Solutions