Welcome to Subscribe On Youtube
1049. Last Stone Weight II
Description
You are given an array of integers stones
where stones[i]
is the weight of the ith
stone.
We are playing a game with the stones. On each turn, we choose any two stones and smash them together. Suppose the stones have weights x
and y
with x <= y
. The result of this smash is:
- If
x == y
, both stones are destroyed, and - If
x != y
, the stone of weightx
is destroyed, and the stone of weighty
has new weighty - x
.
At the end of the game, there is at most one stone left.
Return the smallest possible weight of the left stone. If there are no stones left, return 0
.
Example 1:
Input: stones = [2,7,4,1,8,1] Output: 1 Explanation: We can combine 2 and 4 to get 2, so the array converts to [2,7,1,8,1] then, we can combine 7 and 8 to get 1, so the array converts to [2,1,1,1] then, we can combine 2 and 1 to get 1, so the array converts to [1,1,1] then, we can combine 1 and 1 to get 0, so the array converts to [1], then that's the optimal value.
Example 2:
Input: stones = [31,26,33,21,40] Output: 5
Constraints:
1 <= stones.length <= 30
1 <= stones[i] <= 100
Solutions
Dynamic programming.
This question can be converted to calculate how many stones a knapsack with a capacity of sum / 2
can hold.
-
class Solution { public int lastStoneWeightII(int[] stones) { int s = 0; for (int v : stones) { s += v; } int m = stones.length; int n = s >> 1; int[] dp = new int[n + 1]; for (int v : stones) { for (int j = n; j >= v; --j) { dp[j] = Math.max(dp[j], dp[j - v] + v); } } return s - dp[n] * 2; } }
-
class Solution { public: int lastStoneWeightII(vector<int>& stones) { int s = accumulate(stones.begin(), stones.end(), 0); int n = s >> 1; vector<int> dp(n + 1); for (int& v : stones) for (int j = n; j >= v; --j) dp[j] = max(dp[j], dp[j - v] + v); return s - dp[n] * 2; } };
-
class Solution: def lastStoneWeightII(self, stones: List[int]) -> int: s = sum(stones) m, n = len(stones), s >> 1 dp = [0] * (n + 1) for v in stones: for j in range(n, v - 1, -1): dp[j] = max(dp[j], dp[j - v] + v) return s - dp[-1] * 2
-
func lastStoneWeightII(stones []int) int { s := 0 for _, v := range stones { s += v } n := s >> 1 dp := make([]int, n+1) for _, v := range stones { for j := n; j >= v; j-- { dp[j] = max(dp[j], dp[j-v]+v) } } return s - dp[n]*2 }
-
/** * @param {number[]} stones * @return {number} */ var lastStoneWeightII = function (stones) { let s = 0; for (let v of stones) { s += v; } const n = s >> 1; let dp = new Array(n + 1).fill(0); for (let v of stones) { for (let j = n; j >= v; --j) { dp[j] = Math.max(dp[j], dp[j - v] + v); } } return s - dp[n] * 2; };
-
impl Solution { #[allow(dead_code)] pub fn last_stone_weight_ii(stones: Vec<i32>) -> i32 { let n = stones.len(); let mut sum = 0; for e in &stones { sum += *e; } let m = (sum / 2) as usize; let mut dp: Vec<Vec<i32>> = vec![vec![0; m + 1]; n + 1]; // Begin the actual dp process for i in 1..=n { for j in 1..=m { dp[i][j] = if stones[i - 1] > (j as i32) { dp[i - 1][j] } else { std::cmp::max( dp[i - 1][j], dp[i - 1][j - (stones[i - 1] as usize)] + stones[i - 1] ) }; } } sum - 2 * dp[n][m] } }