Welcome to Subscribe On Youtube

1049. Last Stone Weight II

Description

You are given an array of integers stones where stones[i] is the weight of the ith stone.

We are playing a game with the stones. On each turn, we choose any two stones and smash them together. Suppose the stones have weights x and y with x <= y. The result of this smash is:

  • If x == y, both stones are destroyed, and
  • If x != y, the stone of weight x is destroyed, and the stone of weight y has new weight y - x.

At the end of the game, there is at most one stone left.

Return the smallest possible weight of the left stone. If there are no stones left, return 0.

 

Example 1:

Input: stones = [2,7,4,1,8,1]
Output: 1
Explanation:
We can combine 2 and 4 to get 2, so the array converts to [2,7,1,8,1] then,
we can combine 7 and 8 to get 1, so the array converts to [2,1,1,1] then,
we can combine 2 and 1 to get 1, so the array converts to [1,1,1] then,
we can combine 1 and 1 to get 0, so the array converts to [1], then that's the optimal value.

Example 2:

Input: stones = [31,26,33,21,40]
Output: 5

 

Constraints:

  • 1 <= stones.length <= 30
  • 1 <= stones[i] <= 100

Solutions

Dynamic programming.

This question can be converted to calculate how many stones a knapsack with a capacity of sum / 2 can hold.

  • class Solution {
        public int lastStoneWeightII(int[] stones) {
            int s = 0;
            for (int v : stones) {
                s += v;
            }
            int m = stones.length;
            int n = s >> 1;
            int[] dp = new int[n + 1];
            for (int v : stones) {
                for (int j = n; j >= v; --j) {
                    dp[j] = Math.max(dp[j], dp[j - v] + v);
                }
            }
            return s - dp[n] * 2;
        }
    }
    
  • class Solution {
    public:
        int lastStoneWeightII(vector<int>& stones) {
            int s = accumulate(stones.begin(), stones.end(), 0);
            int n = s >> 1;
            vector<int> dp(n + 1);
            for (int& v : stones)
                for (int j = n; j >= v; --j)
                    dp[j] = max(dp[j], dp[j - v] + v);
            return s - dp[n] * 2;
        }
    };
    
  • class Solution:
        def lastStoneWeightII(self, stones: List[int]) -> int:
            s = sum(stones)
            m, n = len(stones), s >> 1
            dp = [0] * (n + 1)
            for v in stones:
                for j in range(n, v - 1, -1):
                    dp[j] = max(dp[j], dp[j - v] + v)
            return s - dp[-1] * 2
    
    
  • func lastStoneWeightII(stones []int) int {
    	s := 0
    	for _, v := range stones {
    		s += v
    	}
    	n := s >> 1
    	dp := make([]int, n+1)
    	for _, v := range stones {
    		for j := n; j >= v; j-- {
    			dp[j] = max(dp[j], dp[j-v]+v)
    		}
    	}
    	return s - dp[n]*2
    }
    
  • /**
     * @param {number[]} stones
     * @return {number}
     */
    var lastStoneWeightII = function (stones) {
        let s = 0;
        for (let v of stones) {
            s += v;
        }
        const n = s >> 1;
        let dp = new Array(n + 1).fill(0);
        for (let v of stones) {
            for (let j = n; j >= v; --j) {
                dp[j] = Math.max(dp[j], dp[j - v] + v);
            }
        }
        return s - dp[n] * 2;
    };
    
    
  • impl Solution {
        #[allow(dead_code)]
        pub fn last_stone_weight_ii(stones: Vec<i32>) -> i32 {
            let n = stones.len();
            let mut sum = 0;
    
            for e in &stones {
                sum += *e;
            }
    
            let m = (sum / 2) as usize;
            let mut dp: Vec<Vec<i32>> = vec![vec![0; m + 1]; n + 1];
    
            // Begin the actual dp process
            for i in 1..=n {
                for j in 1..=m {
                    dp[i][j] = if stones[i - 1] > (j as i32) {
                        dp[i - 1][j]
                    } else {
                        std::cmp::max(
                            dp[i - 1][j],
                            dp[i - 1][j - (stones[i - 1] as usize)] + stones[i - 1]
                        )
                    };
                }
            }
    
            sum - 2 * dp[n][m]
        }
    }
    
    

All Problems

All Solutions