Welcome to Subscribe On Youtube
Formatted question description: https://leetcode.ca/all/1035.html
1035. Uncrossed Lines (Medium)
We write the integers of A
and B
(in the order they are given) on two separate horizontal lines.
Now, we may draw connecting lines: a straight line connecting two numbers A[i]
and B[j]
such that:
A[i] == B[j]
;- The line we draw does not intersect any other connecting (non-horizontal) line.
Note that a connecting lines cannot intersect even at the endpoints: each number can only belong to one connecting line.
Return the maximum number of connecting lines we can draw in this way.
Example 1:
Input: A = [1,4,2], B = [1,2,4] Output: 2 Explanation: We can draw 2 uncrossed lines as in the diagram. We cannot draw 3 uncrossed lines, because the line from A[1]=4 to B[2]=4 will intersect the line from A[2]=2 to B[1]=2.
Example 2:
Input: A = [2,5,1,2,5], B = [10,5,2,1,5,2] Output: 3
Example 3:
Input: A = [1,3,7,1,7,5], B = [1,9,2,5,1] Output: 2
Note:
1 <= A.length <= 500
1 <= B.length <= 500
1 <= A[i], B[i] <= 2000
Related Topics:
Array
Similar Questions:
Solution 1. DP
This problem is equivalent to longest common subsequence.
Let dp[i + 1][j + 1]
be the maximum number of connecting lines between A[0..i]
and B[0..j]
.
dp[i+1][j+1] = max( dp[i+1][j], dp[i][j+1] ) if A[i] != B[j]
1 + dp[i][j] if A[i] == B[j]
dp[0][0] = 0
// OJ: https://leetcode.com/problems/uncrossed-lines/
// Time: O(MN)
// Space: O(MN)
class Solution {
public:
int maxUncrossedLines(vector<int>& A, vector<int>& B) {
int M = A.size(), N = B.size();
vector<vector<int>> dp(M + 1, vector<int>(N + 1));
for (int i = 0; i < M; ++i) {
for (int j = 0; j < N; ++j) {
if (A[i] == B[j]) dp[i + 1][j + 1] = 1 + dp[i][j];
else dp[i + 1][j + 1] = max(dp[i][j + 1], dp[i + 1][j]);
}
}
return dp[M][N];
}
};
Solution 2. DP + Space Optimization
// OJ: https://leetcode.com/problems/uncrossed-lines/
// Time: O(MN)
// Space: O(min(M, N))
class Solution {
public:
int maxUncrossedLines(vector<int>& A, vector<int>& B) {
int M = A.size(), N = B.size();
if (M < N) swap(M, N), swap(A, B);
vector<int> dp(N + 1);
for (int i = 0; i < M; ++i) {
int prev = 0;
for (int j = 0; j < N; ++j) {
int cur = dp[j + 1];
if (A[i] == B[j]) dp[j + 1] = 1 + prev;
else dp[j + 1] = max(dp[j + 1], dp[j]);
prev = cur;
}
}
return dp[N];
}
};
-
class Solution { public int maxUncrossedLines(int[] A, int[] B) { int length1 = A.length, length2 = B.length; int[][] dp = new int[length1 + 1][length2 + 1]; for (int i = 1; i <= length1; i++) { int num1 = A[i - 1]; for (int j = 1; j <= length2; j++) { int num2 = B[j - 1]; if (num1 == num2) dp[i][j] = dp[i - 1][j - 1] + 1; else dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]); } } return dp[length1][length2]; } } ############ class Solution { public int maxUncrossedLines(int[] nums1, int[] nums2) { int m = nums1.length; int n = nums2.length; int[][] dp = new int[m + 1][n + 1]; for (int i = 1; i <= m; i++) { for (int j = 1; j <= n; j++) { if (nums1[i - 1] == nums2[j - 1]) { dp[i][j] = dp[i - 1][j - 1] + 1; } else { dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]); } } } return dp[m][n]; } }
-
// OJ: https://leetcode.com/problems/uncrossed-lines/ // Time: O(MN) // Space: O(MN) class Solution { public: int maxUncrossedLines(vector<int>& A, vector<int>& B) { int M = A.size(), N = B.size(); vector<vector<int>> dp(M + 1, vector<int>(N + 1)); for (int i = 0; i < M; ++i) { for (int j = 0; j < N; ++j) { if (A[i] == B[j]) dp[i + 1][j + 1] = 1 + dp[i][j]; else dp[i + 1][j + 1] = max(dp[i][j + 1], dp[i + 1][j]); } } return dp[M][N]; } };
-
class Solution: def maxUncrossedLines(self, nums1: List[int], nums2: List[int]) -> int: m, n = len(nums1), len(nums2) dp = [[0] * (n + 1) for i in range(m + 1)] for i in range(1, m + 1): for j in range(1, n + 1): if nums1[i - 1] == nums2[j - 1]: dp[i][j] = dp[i - 1][j - 1] + 1 else: dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) return dp[m][n] ############ # 1035. Uncrossed Lines # https://leetcode.com/problems/uncrossed-lines/ class Solution: def maxUncrossedLines(self, nums1: List[int], nums2: List[int]) -> int: m, n = len(nums1), len(nums2) dp = [[0] * (n + 1) for _ in range(m + 1)] for i in range(m): for j in range(n): if nums1[i] == nums2[j]: dp[i + 1][j + 1] = 1 + dp[i][j] else: dp[i + 1][j + 1] = max(dp[i + 1][j], dp[i][j + 1]) return dp[m][n]
-
func maxUncrossedLines(nums1 []int, nums2 []int) int { m, n := len(nums1), len(nums2) dp := make([][]int, m+1) for i := range dp { dp[i] = make([]int, n+1) } for i := 1; i <= m; i++ { for j := 1; j <= n; j++ { if nums1[i-1] == nums2[j-1] { dp[i][j] = dp[i-1][j-1] + 1 } else { dp[i][j] = max(dp[i-1][j], dp[i][j-1]) } } } return dp[m][n] } func max(a, b int) int { if a > b { return a } return b }
-
function maxUncrossedLines(nums1: number[], nums2: number[]): number { const m = nums1.length; const n = nums2.length; const dp = Array.from({ length: m + 1 }, () => new Array(n + 1).fill(0)); for (let i = 1; i <= m; ++i) { for (let j = 1; j <= n; ++j) { dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]); if (nums1[i - 1] == nums2[j - 1]) { dp[i][j] = dp[i - 1][j - 1] + 1; } } } return dp[m][n]; }