Welcome to Subscribe On Youtube
1031. Maximum Sum of Two Non-Overlapping Subarrays
Description
Given an integer array nums
and two integers firstLen
and secondLen
, return the maximum sum of elements in two non-overlapping subarrays with lengths firstLen
and secondLen
.
The array with length firstLen
could occur before or after the array with length secondLen
, but they have to be non-overlapping.
A subarray is a contiguous part of an array.
Example 1:
Input: nums = [0,6,5,2,2,5,1,9,4], firstLen = 1, secondLen = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2.
Example 2:
Input: nums = [3,8,1,3,2,1,8,9,0], firstLen = 3, secondLen = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2.
Example 3:
Input: nums = [2,1,5,6,0,9,5,0,3,8], firstLen = 4, secondLen = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [0,3,8] with length 3.
Constraints:
1 <= firstLen, secondLen <= 1000
2 <= firstLen + secondLen <= 1000
firstLen + secondLen <= nums.length <= 1000
0 <= nums[i] <= 1000
Solutions
-
class Solution { public int maxSumTwoNoOverlap(int[] nums, int firstLen, int secondLen) { int n = nums.length; int[] s = new int[n + 1]; for (int i = 0; i < n; ++i) { s[i + 1] = s[i] + nums[i]; } int ans = 0; for (int i = firstLen, t = 0; i + secondLen - 1 < n; ++i) { t = Math.max(t, s[i] - s[i - firstLen]); ans = Math.max(ans, t + s[i + secondLen] - s[i]); } for (int i = secondLen, t = 0; i + firstLen - 1 < n; ++i) { t = Math.max(t, s[i] - s[i - secondLen]); ans = Math.max(ans, t + s[i + firstLen] - s[i]); } return ans; } }
-
class Solution { public: int maxSumTwoNoOverlap(vector<int>& nums, int firstLen, int secondLen) { int n = nums.size(); vector<int> s(n + 1); for (int i = 0; i < n; ++i) { s[i + 1] = s[i] + nums[i]; } int ans = 0; for (int i = firstLen, t = 0; i + secondLen - 1 < n; ++i) { t = max(t, s[i] - s[i - firstLen]); ans = max(ans, t + s[i + secondLen] - s[i]); } for (int i = secondLen, t = 0; i + firstLen - 1 < n; ++i) { t = max(t, s[i] - s[i - secondLen]); ans = max(ans, t + s[i + firstLen] - s[i]); } return ans; } };
-
class Solution: def maxSumTwoNoOverlap(self, nums: List[int], firstLen: int, secondLen: int) -> int: n = len(nums) s = list(accumulate(nums, initial=0)) ans = t = 0 i = firstLen while i + secondLen - 1 < n: t = max(t, s[i] - s[i - firstLen]) ans = max(ans, t + s[i + secondLen] - s[i]) i += 1 t = 0 i = secondLen while i + firstLen - 1 < n: t = max(t, s[i] - s[i - secondLen]) ans = max(ans, t + s[i + firstLen] - s[i]) i += 1 return ans
-
func maxSumTwoNoOverlap(nums []int, firstLen int, secondLen int) (ans int) { n := len(nums) s := make([]int, n+1) for i, x := range nums { s[i+1] = s[i] + x } for i, t := firstLen, 0; i+secondLen-1 < n; i++ { t = max(t, s[i]-s[i-firstLen]) ans = max(ans, t+s[i+secondLen]-s[i]) } for i, t := secondLen, 0; i+firstLen-1 < n; i++ { t = max(t, s[i]-s[i-secondLen]) ans = max(ans, t+s[i+firstLen]-s[i]) } return }