Welcome to Subscribe On Youtube

994. Rotting Oranges

Description

You are given an m x n grid where each cell can have one of three values:

  • 0 representing an empty cell,
  • 1 representing a fresh orange, or
  • 2 representing a rotten orange.

Every minute, any fresh orange that is 4-directionally adjacent to a rotten orange becomes rotten.

Return the minimum number of minutes that must elapse until no cell has a fresh orange. If this is impossible, return -1.

 

Example 1:

Input: grid = [[2,1,1],[1,1,0],[0,1,1]]
Output: 4

Example 2:

Input: grid = [[2,1,1],[0,1,1],[1,0,1]]
Output: -1
Explanation: The orange in the bottom left corner (row 2, column 0) is never rotten, because rotting only happens 4-directionally.

Example 3:

Input: grid = [[0,2]]
Output: 0
Explanation: Since there are already no fresh oranges at minute 0, the answer is just 0.

 

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 10
  • grid[i][j] is 0, 1, or 2.

Solutions

  • class Solution {
        public int orangesRotting(int[][] grid) {
            int m = grid.length, n = grid[0].length;
            int cnt = 0;
            Deque<int[]> q = new LinkedList<>();
            for (int i = 0; i < m; ++i) {
                for (int j = 0; j < n; ++j) {
                    if (grid[i][j] == 2) {
                        q.offer(new int[] {i, j});
                    } else if (grid[i][j] == 1) {
                        ++cnt;
                    }
                }
            }
            int ans = 0;
            int[] dirs = {1, 0, -1, 0, 1};
            while (!q.isEmpty() && cnt > 0) {
                ++ans;
                for (int i = q.size(); i > 0; --i) {
                    int[] p = q.poll();
                    for (int j = 0; j < 4; ++j) {
                        int x = p[0] + dirs[j];
                        int y = p[1] + dirs[j + 1];
                        if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == 1) {
                            grid[x][y] = 2;
                            --cnt;
                            q.offer(new int[] {x, y});
                        }
                    }
                }
            }
            return cnt > 0 ? -1 : ans;
        }
    }
    
  • class Solution {
    public:
        int orangesRotting(vector<vector<int>>& grid) {
            int m = grid.size(), n = grid[0].size();
            int cnt = 0;
            typedef pair<int, int> pii;
            queue<pii> q;
            for (int i = 0; i < m; ++i) {
                for (int j = 0; j < n; ++j) {
                    if (grid[i][j] == 2)
                        q.emplace(i, j);
                    else if (grid[i][j] == 1)
                        ++cnt;
                }
            }
            int ans = 0;
            vector<int> dirs = {-1, 0, 1, 0, -1};
            while (!q.empty() && cnt > 0) {
                ++ans;
                for (int i = q.size(); i > 0; --i) {
                    auto p = q.front();
                    q.pop();
                    for (int j = 0; j < 4; ++j) {
                        int x = p.first + dirs[j];
                        int y = p.second + dirs[j + 1];
                        if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == 1) {
                            --cnt;
                            grid[x][y] = 2;
                            q.emplace(x, y);
                        }
                    }
                }
            }
            return cnt > 0 ? -1 : ans;
        }
    };
    
  • class Solution:
        def orangesRotting(self, grid: List[List[int]]) -> int:
            m, n = len(grid), len(grid[0])
            q = deque()
            cnt = 0
            for i in range(m):
                for j in range(n):
                    if grid[i][j] == 2:
                        q.append((i, j))
                    elif grid[i][j] == 1:
                        cnt += 1
            ans = 0
            while q and cnt:
                ans += 1
                for _ in range(len(q)):
                    i, j = q.popleft()
                    for a, b in [[0, 1], [0, -1], [1, 0], [-1, 0]]:
                        x, y = i + a, j + b
                        if 0 <= x < m and 0 <= y < n and grid[x][y] == 1:
                            cnt -= 1
                            grid[x][y] = 2
                            q.append((x, y))
            return ans if cnt == 0 else -1
    
    
  • func orangesRotting(grid [][]int) int {
    	m, n := len(grid), len(grid[0])
    	cnt := 0
    	var q [][]int
    	for i := 0; i < m; i++ {
    		for j := 0; j < n; j++ {
    			if grid[i][j] == 2 {
    				q = append(q, []int{i, j})
    			} else if grid[i][j] == 1 {
    				cnt++
    			}
    		}
    	}
    	ans := 0
    	dirs := []int{-1, 0, 1, 0, -1}
    	for len(q) > 0 && cnt > 0 {
    		ans++
    		for i := len(q); i > 0; i-- {
    			p := q[0]
    			q = q[1:]
    			for j := 0; j < 4; j++ {
    				x, y := p[0]+dirs[j], p[1]+dirs[j+1]
    				if x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == 1 {
    					cnt--
    					grid[x][y] = 2
    					q = append(q, []int{x, y})
    				}
    			}
    		}
    	}
    	if cnt > 0 {
    		return -1
    	}
    	return ans
    }
    
  • function orangesRotting(grid: number[][]): number {
        const m = grid.length;
        const n = grid[0].length;
        let count = 0;
        const queue = [];
        for (let i = 0; i < m; i++) {
            for (let j = 0; j < n; j++) {
                if (grid[i][j] === 1) {
                    count++;
                } else if (grid[i][j] === 2) {
                    queue.push([i, j]);
                }
            }
        }
        let res = 0;
        const dris = [1, 0, -1, 0, 1];
        while (count !== 0 && queue.length !== 0) {
            for (let i = queue.length; i > 0; i--) {
                const [x, y] = queue.shift();
                for (let j = 0; j < 4; j++) {
                    const newX = x + dris[j];
                    const newY = y + dris[j + 1];
                    if (newX >= 0 && newX < m && newY >= 0 && newY <= n && grid[newX][newY] === 1) {
                        grid[newX][newY] = 2;
                        queue.push([newX, newY]);
                        count--;
                    }
                }
            }
            res++;
        }
        if (count != 0) {
            return -1;
        }
        return res;
    }
    
    
  • use std::collections::VecDeque;
    
    impl Solution {
        pub fn oranges_rotting(mut grid: Vec<Vec<i32>>) -> i32 {
            let mut queue = VecDeque::new();
            let m = grid.len();
            let n = grid[0].len();
            // 新鲜橘子数量
            let mut count = 0;
            for i in 0..m {
                for j in 0..n {
                    match grid[i][j] {
                        1 => {
                            count += 1;
                        }
                        2 => queue.push_back([i as i32, j as i32]),
                        _ => (),
                    }
                }
            }
            let mut res = 0;
            let dirs = [1, 0, -1, 0, 1];
            while count != 0 && queue.len() != 0 {
                let mut len = queue.len();
                while len != 0 {
                    let [x, y] = queue.pop_front().unwrap();
                    for i in 0..4 {
                        let new_x = x + dirs[i];
                        let new_y = y + dirs[i + 1];
                        if
                            new_x >= 0 &&
                            new_x < (m as i32) &&
                            new_y >= 0 &&
                            new_y < (n as i32) &&
                            grid[new_x as usize][new_y as usize] == 1
                        {
                            grid[new_x as usize][new_y as usize] = 2;
                            queue.push_back([new_x, new_y]);
                            count -= 1;
                        }
                    }
                    len -= 1;
                }
                res += 1;
            }
            if count != 0 {
                return -1;
            }
            res
        }
    }
    
    

All Problems

All Solutions