Welcome to Subscribe On Youtube
992. Subarrays with K Different Integers
Description
Given an integer array nums
and an integer k
, return the number of good subarrays of nums
.
A good array is an array where the number of different integers in that array is exactly k
.
- For example,
[1,2,3,1,2]
has3
different integers:1
,2
, and3
.
A subarray is a contiguous part of an array.
Example 1:
Input: nums = [1,2,1,2,3], k = 2 Output: 7 Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2]
Example 2:
Input: nums = [1,2,1,3,4], k = 3 Output: 3 Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4].
Constraints:
1 <= nums.length <= 2 * 104
1 <= nums[i], k <= nums.length
Solutions
-
class Solution { public int subarraysWithKDistinct(int[] nums, int k) { int[] left = f(nums, k); int[] right = f(nums, k - 1); int ans = 0; for (int i = 0; i < nums.length; ++i) { ans += right[i] - left[i]; } return ans; } private int[] f(int[] nums, int k) { int n = nums.length; int[] cnt = new int[n + 1]; int[] pos = new int[n]; int s = 0; for (int i = 0, j = 0; i < n; ++i) { if (++cnt[nums[i]] == 1) { ++s; } for (; s > k; ++j) { if (--cnt[nums[j]] == 0) { --s; } } pos[i] = j; } return pos; } }
-
class Solution { public: int subarraysWithKDistinct(vector<int>& nums, int k) { vector<int> left = f(nums, k); vector<int> right = f(nums, k - 1); int ans = 0; for (int i = 0; i < nums.size(); ++i) { ans += right[i] - left[i]; } return ans; } vector<int> f(vector<int>& nums, int k) { int n = nums.size(); vector<int> pos(n); int cnt[n + 1]; memset(cnt, 0, sizeof(cnt)); int s = 0; for (int i = 0, j = 0; i < n; ++i) { if (++cnt[nums[i]] == 1) { ++s; } for (; s > k; ++j) { if (--cnt[nums[j]] == 0) { --s; } } pos[i] = j; } return pos; } };
-
class Solution: def subarraysWithKDistinct(self, nums: List[int], k: int) -> int: def f(k): pos = [0] * len(nums) cnt = Counter() j = 0 for i, x in enumerate(nums): cnt[x] += 1 while len(cnt) > k: cnt[nums[j]] -= 1 if cnt[nums[j]] == 0: cnt.pop(nums[j]) j += 1 pos[i] = j return pos return sum(a - b for a, b in zip(f(k - 1), f(k)))
-
func subarraysWithKDistinct(nums []int, k int) (ans int) { f := func(k int) []int { n := len(nums) pos := make([]int, n) cnt := make([]int, n+1) s, j := 0, 0 for i, x := range nums { cnt[x]++ if cnt[x] == 1 { s++ } for ; s > k; j++ { cnt[nums[j]]-- if cnt[nums[j]] == 0 { s-- } } pos[i] = j } return pos } left, right := f(k), f(k-1) for i := range left { ans += right[i] - left[i] } return }