Welcome to Subscribe On Youtube

963. Minimum Area Rectangle II

Description

You are given an array of points in the X-Y plane points where points[i] = [xi, yi].

Return the minimum area of any rectangle formed from these points, with sides not necessarily parallel to the X and Y axes. If there is not any such rectangle, return 0.

Answers within 10-5 of the actual answer will be accepted.

 

Example 1:

Input: points = [[1,2],[2,1],[1,0],[0,1]]
Output: 2.00000
Explanation: The minimum area rectangle occurs at [1,2],[2,1],[1,0],[0,1], with an area of 2.

Example 2:

Input: points = [[0,1],[2,1],[1,1],[1,0],[2,0]]
Output: 1.00000
Explanation: The minimum area rectangle occurs at [1,0],[1,1],[2,1],[2,0], with an area of 1.

Example 3:

Input: points = [[0,3],[1,2],[3,1],[1,3],[2,1]]
Output: 0
Explanation: There is no possible rectangle to form from these points.

 

Constraints:

  • 1 <= points.length <= 50
  • points[i].length == 2
  • 0 <= xi, yi <= 4 * 104
  • All the given points are unique.

Solutions

  • class Solution {
        public double minAreaFreeRect(int[][] points) {
            int n = points.length;
            Set<Integer> s = new HashSet<>(n);
            for (int[] p : points) {
                s.add(f(p[0], p[1]));
            }
            double ans = Double.MAX_VALUE;
            for (int i = 0; i < n; ++i) {
                int x1 = points[i][0], y1 = points[i][1];
                for (int j = 0; j < n; ++j) {
                    if (j != i) {
                        int x2 = points[j][0], y2 = points[j][1];
                        for (int k = j + 1; k < n; ++k) {
                            if (k != i) {
                                int x3 = points[k][0], y3 = points[k][1];
                                int x4 = x2 - x1 + x3, y4 = y2 - y1 + y3;
                                if (s.contains(f(x4, y4))) {
                                    if ((x2 - x1) * (x3 - x1) + (y2 - y1) * (y3 - y1) == 0) {
                                        int ww = (x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1);
                                        int hh = (x3 - x1) * (x3 - x1) + (y3 - y1) * (y3 - y1);
                                        ans = Math.min(ans, Math.sqrt(1L * ww * hh));
                                    }
                                }
                            }
                        }
                    }
                }
            }
            return ans == Double.MAX_VALUE ? 0 : ans;
        }
    
        private int f(int x, int y) {
            return x * 40001 + y;
        }
    }
    
  • class Solution {
    public:
        double minAreaFreeRect(vector<vector<int>>& points) {
            auto f = [](int x, int y) {
                return x * 40001 + y;
            };
            int n = points.size();
            unordered_set<int> s;
            for (auto& p : points) {
                s.insert(f(p[0], p[1]));
            }
            double ans = 1e20;
            for (int i = 0; i < n; ++i) {
                int x1 = points[i][0], y1 = points[i][1];
                for (int j = 0; j < n; ++j) {
                    if (j != i) {
                        int x2 = points[j][0], y2 = points[j][1];
                        for (int k = j + 1; k < n; ++k) {
                            if (k != i) {
                                int x3 = points[k][0], y3 = points[k][1];
                                int x4 = x2 - x1 + x3, y4 = y2 - y1 + y3;
                                if (x4 >= 0 && x4 < 40000 && y4 >= 0 && y4 <= 40000 && s.count(f(x4, y4))) {
                                    if ((x2 - x1) * (x3 - x1) + (y2 - y1) * (y3 - y1) == 0) {
                                        int ww = (x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1);
                                        int hh = (x3 - x1) * (x3 - x1) + (y3 - y1) * (y3 - y1);
                                        ans = min(ans, sqrt(1LL * ww * hh));
                                    }
                                }
                            }
                        }
                    }
                }
            }
            return ans == 1e20 ? 0 : ans;
        }
    };
    
  • class Solution:
        def minAreaFreeRect(self, points: List[List[int]]) -> float:
            s = {(x, y) for x, y in points}
            n = len(points)
            ans = inf
            for i in range(n):
                x1, y1 = points[i]
                for j in range(n):
                    if j != i:
                        x2, y2 = points[j]
                        for k in range(j + 1, n):
                            if k != i:
                                x3, y3 = points[k]
                                x4 = x2 - x1 + x3
                                y4 = y2 - y1 + y3
                                if (x4, y4) in s:
                                    v21 = (x2 - x1, y2 - y1)
                                    v31 = (x3 - x1, y3 - y1)
                                    if v21[0] * v31[0] + v21[1] * v31[1] == 0:
                                        w = sqrt(v21[0] ** 2 + v21[1] ** 2)
                                        h = sqrt(v31[0] ** 2 + v31[1] ** 2)
                                        ans = min(ans, w * h)
            return 0 if ans == inf else ans
    
    
  • func minAreaFreeRect(points [][]int) float64 {
    	n := len(points)
    	f := func(x, y int) int {
    		return x*40001 + y
    	}
    	s := map[int]bool{}
    	for _, p := range points {
    		s[f(p[0], p[1])] = true
    	}
    	ans := 1e20
    	for i := 0; i < n; i++ {
    		x1, y1 := points[i][0], points[i][1]
    		for j := 0; j < n; j++ {
    			if j != i {
    				x2, y2 := points[j][0], points[j][1]
    				for k := j + 1; k < n; k++ {
    					if k != i {
    						x3, y3 := points[k][0], points[k][1]
    						x4, y4 := x2-x1+x3, y2-y1+y3
    						if s[f(x4, y4)] {
    							if (x2-x1)*(x3-x1)+(y2-y1)*(y3-y1) == 0 {
    								ww := (x2-x1)*(x2-x1) + (y2-y1)*(y2-y1)
    								hh := (x3-x1)*(x3-x1) + (y3-y1)*(y3-y1)
    								ans = math.Min(ans, math.Sqrt(float64(ww*hh)))
    							}
    						}
    					}
    				}
    			}
    		}
    	}
    	if ans == 1e20 {
    		return 0
    	}
    	return ans
    }
    
  • function minAreaFreeRect(points: number[][]): number {
        const n = points.length;
        const f = (x: number, y: number): number => x * 40001 + y;
        const s: Set<number> = new Set();
        for (const [x, y] of points) {
            s.add(f(x, y));
        }
        let ans = Number.MAX_VALUE;
        for (let i = 0; i < n; ++i) {
            const [x1, y1] = points[i];
            for (let j = 0; j < n; ++j) {
                if (j !== i) {
                    const [x2, y2] = points[j];
                    for (let k = j + 1; k < n; ++k) {
                        if (k !== i) {
                            const [x3, y3] = points[k];
                            const x4 = x2 - x1 + x3;
                            const y4 = y2 - y1 + y3;
                            if (s.has(f(x4, y4))) {
                                if ((x2 - x1) * (x3 - x1) + (y2 - y1) * (y3 - y1) === 0) {
                                    const ww = (x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1);
                                    const hh = (x3 - x1) * (x3 - x1) + (y3 - y1) * (y3 - y1);
                                    ans = Math.min(ans, Math.sqrt(ww * hh));
                                }
                            }
                        }
                    }
                }
            }
        }
        return ans === Number.MAX_VALUE ? 0 : ans;
    }
    
    

All Problems

All Solutions