Welcome to Subscribe On Youtube

923. 3Sum With Multiplicity

Description

Given an integer array arr, and an integer target, return the number of tuples i, j, k such that i < j < k and arr[i] + arr[j] + arr[k] == target.

As the answer can be very large, return it modulo 109 + 7.

 

Example 1:

Input: arr = [1,1,2,2,3,3,4,4,5,5], target = 8
Output: 20
Explanation: 
Enumerating by the values (arr[i], arr[j], arr[k]):
(1, 2, 5) occurs 8 times;
(1, 3, 4) occurs 8 times;
(2, 2, 4) occurs 2 times;
(2, 3, 3) occurs 2 times.

Example 2:

Input: arr = [1,1,2,2,2,2], target = 5
Output: 12
Explanation: 
arr[i] = 1, arr[j] = arr[k] = 2 occurs 12 times:
We choose one 1 from [1,1] in 2 ways,
and two 2s from [2,2,2,2] in 6 ways.

Example 3:

Input: arr = [2,1,3], target = 6
Output: 1
Explanation: (1, 2, 3) occured one time in the array so we return 1.

 

Constraints:

  • 3 <= arr.length <= 3000
  • 0 <= arr[i] <= 100
  • 0 <= target <= 300

Solutions

  • class Solution {
        private static final int MOD = (int) 1e9 + 7;
    
        public int threeSumMulti(int[] arr, int target) {
            int[] cnt = new int[101];
            for (int v : arr) {
                ++cnt[v];
            }
            long ans = 0;
            for (int j = 0; j < arr.length; ++j) {
                int b = arr[j];
                --cnt[b];
                for (int i = 0; i < j; ++i) {
                    int a = arr[i];
                    int c = target - a - b;
                    if (c >= 0 && c <= 100) {
                        ans = (ans + cnt[c]) % MOD;
                    }
                }
            }
            return (int) ans;
        }
    }
    
  • class Solution {
    public:
        const int mod = 1e9 + 7;
    
        int threeSumMulti(vector<int>& arr, int target) {
            int cnt[101] = {0};
            for (int& v : arr) {
                ++cnt[v];
            }
            long ans = 0;
            for (int j = 0; j < arr.size(); ++j) {
                int b = arr[j];
                --cnt[b];
                for (int i = 0; i < j; ++i) {
                    int a = arr[i];
                    int c = target - a - b;
                    if (c >= 0 && c <= 100) {
                        ans += cnt[c];
                        ans %= mod;
                    }
                }
            }
            return ans;
        }
    };
    
  • class Solution:
        def threeSumMulti(self, arr: List[int], target: int) -> int:
            cnt = Counter(arr)
            ans = 0
            mod = 10**9 + 7
            for j, b in enumerate(arr):
                cnt[b] -= 1
                for i in range(j):
                    a = arr[i]
                    c = target - a - b
                    ans = (ans + cnt[c]) % mod
            return ans
    
    
  • func threeSumMulti(arr []int, target int) int {
    	const mod int = 1e9 + 7
    	cnt := [101]int{}
    	for _, v := range arr {
    		cnt[v]++
    	}
    	ans := 0
    	for j, b := range arr {
    		cnt[b]--
    		for i := 0; i < j; i++ {
    			a := arr[i]
    			c := target - a - b
    			if c >= 0 && c <= 100 {
    				ans += cnt[c]
    				ans %= mod
    			}
    		}
    	}
    	return ans
    }
    
  • function threeSumMulti(arr: number[], target: number): number {
        const mod = 10 ** 9 + 7;
        const cnt: number[] = Array(101).fill(0);
        for (const x of arr) {
            ++cnt[x];
        }
        let ans = 0;
        const n = arr.length;
        for (let j = 0; j < n; ++j) {
            --cnt[arr[j]];
            for (let i = 0; i < j; ++i) {
                const c = target - arr[i] - arr[j];
                if (c >= 0 && c < cnt.length) {
                    ans = (ans + cnt[c]) % mod;
                }
            }
        }
        return ans;
    }
    
    

All Problems

All Solutions