##### Welcome to Subscribe On Youtube

Formatted question description: https://leetcode.ca/all/908.html

# 908. Smallest Range I (Easy)

Given an array A of integers, for each integer A[i] we may choose any x with -K <= x <= K, and add x to A[i].

After this process, we have some array B.

Return the smallest possible difference between the maximum value of B and the minimum value of B.

Example 1:

Input: A = [1], K = 0
Output: 0
Explanation: B = [1]


Example 2:

Input: A = [0,10], K = 2
Output: 6
Explanation: B = [2,8]


Example 3:

Input: A = [1,3,6], K = 3
Output: 0
Explanation: B = [3,3,3] or B = [4,4,4]


Note:

1. 1 <= A.length <= 10000
2. 0 <= A[i] <= 10000
3. 0 <= K <= 10000

## Solution 1.

• class Solution {
public int smallestRangeI(int[] A, int K) {
Arrays.sort(A);
int length = A.length;
int min = A[0], max = A[length - 1];
int difference = max - min;
return Math.max(0, difference - 2 * K);
}
}

############

class Solution {
public int smallestRangeI(int[] nums, int k) {
int mx = 0;
int mi = 10000;
for (int v : nums) {
mx = Math.max(mx, v);
mi = Math.min(mi, v);
}
return Math.max(0, mx - mi - k * 2);
}
}

• // OJ: https://leetcode.com/problems/smallest-range-i/
// Time: O(N)
// Space: O(1)
class Solution {
public:
int smallestRangeI(vector<int>& A, int K) {
int minVal = INT_MAX, maxVal = INT_MIN;
for (int n : A) {
minVal = min(minVal, n);
maxVal = max(maxVal, n);
}
return max(maxVal - minVal - 2 * K, 0);
}
};

• class Solution:
def smallestRangeI(self, nums: List[int], k: int) -> int:
mx, mi = max(nums), min(nums)
return max(0, mx - mi - k * 2)

############

class Solution(object):
def smallestRangeI(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: int
"""
diff = max(nums) - min(nums)
if diff > 2 * k:
return diff - 2 * k
return 0

• func smallestRangeI(nums []int, k int) int {
mx, mi := 0, 10000
for _, v := range nums {
mx = max(mx, v)
mi = min(mi, v)
}
return max(0, mx-mi-k*2)
}

func max(a, b int) int {
if a > b {
return a
}
return b
}

func min(a, b int) int {
if a < b {
return a
}
return b
}

• function smallestRangeI(nums: number[], k: number): number {
const max = nums.reduce((r, v) => Math.max(r, v));
const min = nums.reduce((r, v) => Math.min(r, v));
return Math.max(max - min - k * 2, 0);
}


• impl Solution {
pub fn smallest_range_i(nums: Vec<i32>, k: i32) -> i32 {
let max = nums.iter().max().unwrap();
let min = nums.iter().min().unwrap();
0.max(max - min - k * 2)
}
}