Welcome to Subscribe On Youtube

907. Sum of Subarray Minimums

Description

Given an array of integers arr, find the sum of min(b), where b ranges over every (contiguous) subarray of arr. Since the answer may be large, return the answer modulo 109 + 7.

 

Example 1:

Input: arr = [3,1,2,4]
Output: 17
Explanation: 
Subarrays are [3], [1], [2], [4], [3,1], [1,2], [2,4], [3,1,2], [1,2,4], [3,1,2,4]. 
Minimums are 3, 1, 2, 4, 1, 1, 2, 1, 1, 1.
Sum is 17.

Example 2:

Input: arr = [11,81,94,43,3]
Output: 444

 

Constraints:

  • 1 <= arr.length <= 3 * 104
  • 1 <= arr[i] <= 3 * 104

Solutions

The problem asks for the sum of the minimum values of each subarray, which is actually equivalent to finding the number of subarrays for each element $arr[i]$ where $arr[i]$ is the minimum, multiplying each by $arr[i]$, and then summing these products.

Thus, the focus of the problem is translated to finding the number of subarrays for which $arr[i]$ is the minimum.

For each $arr[i]$, we identify the first position $left[i]$ to its left that is smaller than $arr[i]$ and the first position $right[i]$ to its right that is less than or equal to $arr[i]$.

The number of subarrays where $arr[i]$ is the minimum can then be given by $(i - left[i]) \times (right[i] - i)$.

It’s important to note why we are looking for the first position $right[i]$ that is less than or equal to $arr[i]$ and not less than $arr[i]$.

If we were to look for the first position less than $arr[i]$, we would end up double-counting.

For instance, consider the following array:

The element at index $3$ is $2$, and the first element less than $2$ to its left is at index $0$. If we find the first element less than $2$ to its right, we would end up at index $7$. That means the subarray interval is $(0, 7)$. Note that this is an open interval.

0 4 3 2 5 3 2 1
*     ^       *

If we calculate the subarray interval for the element at index $6$ using the same method, we would find that its interval is also $(0, 7)$.

0 4 3 2 5 3 2 1
*           ^ *

Therefore, the subarray intervals of the elements at index $3$ and $6$ are overlapping, leading to double-counting.

If we were to find the first element less than or equal to $arr[i]$ to its right, we wouldn’t have this problem.

The subarray interval for the element at index $3$ would become $(0, 6)$ and for the element at index $6$ it would be $(0, 7)$, and these two are not overlapping.

To solve this problem, we just need to traverse the array.

For each element $arr[i]$, we use a monotonic stack to find its $left[i]$ and $right[i]$.

Then the number of subarrays where $arr[i]$ is the minimum can be calculated by $(i - left[i]) \times (right[i] - i)$. Multiply this by $arr[i]$ and sum these values for all $i$ to get the final answer.

Remember to take care of data overflow and modulus operation.

The time complexity is $O(n)$, and the space complexity is $O(n)$, where $n$ is the length of the array $arr$.

  • class Solution {
        public int sumSubarrayMins(int[] arr) {
            int n = arr.length;
            int[] left = new int[n];
            int[] right = new int[n];
            Arrays.fill(left, -1);
            Arrays.fill(right, n);
            Deque<Integer> stk = new ArrayDeque<>();
            for (int i = 0; i < n; ++i) {
                while (!stk.isEmpty() && arr[stk.peek()] >= arr[i]) {
                    stk.pop();
                }
                if (!stk.isEmpty()) {
                    left[i] = stk.peek();
                }
                stk.push(i);
            }
            stk.clear();
            for (int i = n - 1; i >= 0; --i) {
                while (!stk.isEmpty() && arr[stk.peek()] > arr[i]) {
                    stk.pop();
                }
                if (!stk.isEmpty()) {
                    right[i] = stk.peek();
                }
                stk.push(i);
            }
            final int mod = (int) 1e9 + 7;
            long ans = 0;
            for (int i = 0; i < n; ++i) {
                ans += (long) (i - left[i]) * (right[i] - i) % mod * arr[i] % mod;
                ans %= mod;
            }
            return (int) ans;
        }
    }
    
  • class Solution {
    public:
        int sumSubarrayMins(vector<int>& arr) {
            int n = arr.size();
            vector<int> left(n, -1);
            vector<int> right(n, n);
            stack<int> stk;
            for (int i = 0; i < n; ++i) {
                while (!stk.empty() && arr[stk.top()] >= arr[i]) {
                    stk.pop();
                }
                if (!stk.empty()) {
                    left[i] = stk.top();
                }
                stk.push(i);
            }
            stk = stack<int>();
            for (int i = n - 1; i >= 0; --i) {
                while (!stk.empty() && arr[stk.top()] > arr[i]) {
                    stk.pop();
                }
                if (!stk.empty()) {
                    right[i] = stk.top();
                }
                stk.push(i);
            }
            long long ans = 0;
            const int mod = 1e9 + 7;
            for (int i = 0; i < n; ++i) {
                ans += 1LL * (i - left[i]) * (right[i] - i) * arr[i] % mod;
                ans %= mod;
            }
            return ans;
        }
    };
    
  • class Solution:
        def sumSubarrayMins(self, arr: List[int]) -> int:
            n = len(arr)
            left = [-1] * n
            right = [n] * n
            stk = []
            for i, v in enumerate(arr):
                while stk and arr[stk[-1]] >= v:
                    stk.pop()
                if stk:
                    left[i] = stk[-1]
                stk.append(i)
    
            stk = []
            for i in range(n - 1, -1, -1):
                while stk and arr[stk[-1]] > arr[i]:
                    stk.pop()
                if stk:
                    right[i] = stk[-1]
                stk.append(i)
            mod = 10**9 + 7
            return sum((i - left[i]) * (right[i] - i) * v for i, v in enumerate(arr)) % mod
    
    
  • func sumSubarrayMins(arr []int) (ans int) {
    	n := len(arr)
    	left := make([]int, n)
    	right := make([]int, n)
    	for i := range left {
    		left[i] = -1
    		right[i] = n
    	}
    	stk := []int{}
    	for i, v := range arr {
    		for len(stk) > 0 && arr[stk[len(stk)-1]] >= v {
    			stk = stk[:len(stk)-1]
    		}
    		if len(stk) > 0 {
    			left[i] = stk[len(stk)-1]
    		}
    		stk = append(stk, i)
    	}
    	stk = []int{}
    	for i := n - 1; i >= 0; i-- {
    		for len(stk) > 0 && arr[stk[len(stk)-1]] > arr[i] {
    			stk = stk[:len(stk)-1]
    		}
    		if len(stk) > 0 {
    			right[i] = stk[len(stk)-1]
    		}
    		stk = append(stk, i)
    	}
    	const mod int = 1e9 + 7
    	for i, v := range arr {
    		ans += (i - left[i]) * (right[i] - i) * v % mod
    		ans %= mod
    	}
    	return
    }
    
  • function sumSubarrayMins(arr: number[]): number {
        const n: number = arr.length;
        const left: number[] = Array(n).fill(-1);
        const right: number[] = Array(n).fill(n);
        const stk: number[] = [];
        for (let i = 0; i < n; ++i) {
            while (stk.length > 0 && arr[stk.at(-1)] >= arr[i]) {
                stk.pop();
            }
            if (stk.length > 0) {
                left[i] = stk.at(-1);
            }
            stk.push(i);
        }
    
        stk.length = 0;
        for (let i = n - 1; ~i; --i) {
            while (stk.length > 0 && arr[stk.at(-1)] > arr[i]) {
                stk.pop();
            }
            if (stk.length > 0) {
                right[i] = stk.at(-1);
            }
            stk.push(i);
        }
    
        const mod: number = 1e9 + 7;
        let ans: number = 0;
        for (let i = 0; i < n; ++i) {
            ans += ((((i - left[i]) * (right[i] - i)) % mod) * arr[i]) % mod;
            ans %= mod;
        }
        return ans;
    }
    
    
  • use std::collections::VecDeque;
    
    impl Solution {
        pub fn sum_subarray_mins(arr: Vec<i32>) -> i32 {
            let n = arr.len();
            let mut left = vec![-1; n];
            let mut right = vec![n as i32; n];
            let mut stk: VecDeque<usize> = VecDeque::new();
    
            for i in 0..n {
                while !stk.is_empty() && arr[*stk.back().unwrap()] >= arr[i] {
                    stk.pop_back();
                }
                if let Some(&top) = stk.back() {
                    left[i] = top as i32;
                }
                stk.push_back(i);
            }
    
            stk.clear();
            for i in (0..n).rev() {
                while !stk.is_empty() && arr[*stk.back().unwrap()] > arr[i] {
                    stk.pop_back();
                }
                if let Some(&top) = stk.back() {
                    right[i] = top as i32;
                }
                stk.push_back(i);
            }
    
            let MOD = 1_000_000_007;
            let mut ans: i64 = 0;
            for i in 0..n {
                ans +=
                    ((((right[i] - (i as i32)) * ((i as i32) - left[i])) as i64) * (arr[i] as i64)) %
                    MOD;
                ans %= MOD;
            }
            ans as i32
        }
    }
    
    

All Problems

All Solutions