Welcome to Subscribe On Youtube
898. Bitwise ORs of Subarrays
Description
Given an integer array arr
, return the number of distinct bitwise ORs of all the non-empty subarrays of arr
.
The bitwise OR of a subarray is the bitwise OR of each integer in the subarray. The bitwise OR of a subarray of one integer is that integer.
A subarray is a contiguous non-empty sequence of elements within an array.
Example 1:
Input: arr = [0] Output: 1 Explanation: There is only one possible result: 0.
Example 2:
Input: arr = [1,1,2] Output: 3 Explanation: The possible subarrays are [1], [1], [2], [1, 1], [1, 2], [1, 1, 2]. These yield the results 1, 1, 2, 1, 3, 3. There are 3 unique values, so the answer is 3.
Example 3:
Input: arr = [1,2,4] Output: 6 Explanation: The possible results are 1, 2, 3, 4, 6, and 7.
Constraints:
1 <= arr.length <= 5 * 104
0 <= arr[i] <= 109
Solutions
Solution 1: Hash Table
The problem asks for the number of unique bitwise OR operations results of subarrays. If we enumerate the end position $i$ of the subarray, the number of bitwise OR operations results of the subarray ending at $i-1$ does not exceed $32$. This is because the bitwise OR operation is a monotonically increasing operation.
Therefore, we use a hash table $ans$ to record all the results of the bitwise OR operations of subarrays, and a hash table $s$ to record the results of the bitwise OR operations of subarrays ending with the current element. Initially, $s$ only contains one element $0$.
Next, we enumerate the end position $i$ of the subarray. The result of the bitwise OR operation of the subarray ending at $i$ is the set of results of the bitwise OR operation of the subarray ending at $i-1$ and $a[i]$, plus $a[i]$ itself. We use a hash table $t$ to record the results of the bitwise OR operation of the subarray ending at $i$, then we update $s = t$, and add all elements in $t$ to $ans$.
Finally, we return the number of elements in the hash table $ans$.
The time complexity is $O(n \times \log M)$, and the space complexity is $O(n \times \log M)$. Here, $n$ and $M$ are the length of the array and the maximum value in the array, respectively.
-
class Solution { public int subarrayBitwiseORs(int[] arr) { Set<Integer> s = new HashSet<>(); s.add(0); Set<Integer> ans = new HashSet<>(); for (int x : arr) { Set<Integer> t = new HashSet<>(); for (int y : s) { t.add(x | y); } t.add(x); s = t; ans.addAll(s); } return ans.size(); } }
-
class Solution { public: int subarrayBitwiseORs(vector<int>& arr) { unordered_set<int> s{ {0} }; unordered_set<int> ans; for (int& x : arr) { unordered_set<int> t{ {x} }; for (int y : s) { t.insert(x | y); } s = move(t); ans.insert(s.begin(), s.end()); } return ans.size(); } };
-
class Solution: def subarrayBitwiseORs(self, arr: List[int]) -> int: s = {0} ans = set() for x in arr: s = {x | y for y in s} | {x} ans |= s return len(ans)
-
func subarrayBitwiseORs(arr []int) int { ans := map[int]bool{} s := map[int]bool{0: true} for _, x := range arr { t := map[int]bool{x: true} for y := range s { t[x|y] = true } s = t for y := range s { ans[y] = true } } return len(ans) }
-
function subarrayBitwiseORs(arr: number[]): number { const s: Set<number> = new Set(); const ans: Set<number> = new Set(); for (const x of arr) { const t: Set<number> = new Set(); for (const y of s) { t.add(x | y); } t.add(x); s.clear(); for (const y of t) { s.add(y); ans.add(y); } } return ans.size; }