Welcome to Subscribe On Youtube

894. All Possible Full Binary Trees

Description

Given an integer n, return a list of all possible full binary trees with n nodes. Each node of each tree in the answer must have Node.val == 0.

Each element of the answer is the root node of one possible tree. You may return the final list of trees in any order.

A full binary tree is a binary tree where each node has exactly 0 or 2 children.

 

Example 1:

Input: n = 7
Output: [[0,0,0,null,null,0,0,null,null,0,0],[0,0,0,null,null,0,0,0,0],[0,0,0,0,0,0,0],[0,0,0,0,0,null,null,null,null,0,0],[0,0,0,0,0,null,null,0,0]]

Example 2:

Input: n = 3
Output: [[0,0,0]]

 

Constraints:

  • 1 <= n <= 20

Solutions

  • /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        private List<TreeNode>[] f;
    
        public List<TreeNode> allPossibleFBT(int n) {
            f = new List[n + 1];
            return dfs(n);
        }
    
        private List<TreeNode> dfs(int n) {
            if (f[n] != null) {
                return f[n];
            }
            if (n == 1) {
                return List.of(new TreeNode());
            }
            List<TreeNode> ans = new ArrayList<>();
            for (int i = 0; i < n - 1; ++i) {
                int j = n - 1 - i;
                for (var left : dfs(i)) {
                    for (var right : dfs(j)) {
                        ans.add(new TreeNode(0, left, right));
                    }
                }
            }
            return f[n] = ans;
        }
    }
    
  • /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
     *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
     *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
     * };
     */
    class Solution {
    public:
        vector<TreeNode*> allPossibleFBT(int n) {
            vector<vector<TreeNode*>> f(n + 1);
            function<vector<TreeNode*>(int)> dfs = [&](int n) -> vector<TreeNode*> {
                if (f[n].size()) {
                    return f[n];
                }
                if (n == 1) {
                    return vector<TreeNode*>{new TreeNode()};
                }
                vector<TreeNode*> ans;
                for (int i = 0; i < n - 1; ++i) {
                    int j = n - 1 - i;
                    for (auto left : dfs(i)) {
                        for (auto right : dfs(j)) {
                            ans.push_back(new TreeNode(0, left, right));
                        }
                    }
                }
                return f[n] = ans;
            };
            return dfs(n);
        }
    };
    
  • # Definition for a binary tree node.
    # class TreeNode:
    #     def __init__(self, val=0, left=None, right=None):
    #         self.val = val
    #         self.left = left
    #         self.right = right
    class Solution:
        def allPossibleFBT(self, n: int) -> List[Optional[TreeNode]]:
            @cache
            def dfs(n: int) -> List[Optional[TreeNode]]:
                if n == 1:
                    return [TreeNode()]
                ans = []
                for i in range(n - 1):
                    j = n - 1 - i
                    for left in dfs(i):
                        for right in dfs(j):
                            ans.append(TreeNode(0, left, right))
                return ans
    
            return dfs(n)
    
    
  • /**
     * Definition for a binary tree node.
     * type TreeNode struct {
     *     Val int
     *     Left *TreeNode
     *     Right *TreeNode
     * }
     */
    func allPossibleFBT(n int) []*TreeNode {
    	f := make([][]*TreeNode, n+1)
    	var dfs func(int) []*TreeNode
    	dfs = func(n int) []*TreeNode {
    		if len(f[n]) > 0 {
    			return f[n]
    		}
    		if n == 1 {
    			return []*TreeNode{&TreeNode{Val: 0} }
    		}
    		ans := []*TreeNode{}
    		for i := 0; i < n-1; i++ {
    			j := n - 1 - i
    			for _, left := range dfs(i) {
    				for _, right := range dfs(j) {
    					ans = append(ans, &TreeNode{0, left, right})
    				}
    			}
    		}
    		f[n] = ans
    		return ans
    	}
    	return dfs(n)
    }
    
  • /**
     * Definition for a binary tree node.
     * class TreeNode {
     *     val: number
     *     left: TreeNode | null
     *     right: TreeNode | null
     *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
     *         this.val = (val===undefined ? 0 : val)
     *         this.left = (left===undefined ? null : left)
     *         this.right = (right===undefined ? null : right)
     *     }
     * }
     */
    
    function allPossibleFBT(n: number): Array<TreeNode | null> {
        const f: Array<Array<TreeNode | null>> = new Array(n + 1).fill(0).map(() => []);
        const dfs = (n: number): Array<TreeNode | null> => {
            if (f[n].length) {
                return f[n];
            }
            if (n === 1) {
                f[n].push(new TreeNode(0));
                return f[n];
            }
            const ans: Array<TreeNode | null> = [];
            for (let i = 0; i < n - 1; ++i) {
                const j = n - 1 - i;
                for (const left of dfs(i)) {
                    for (const right of dfs(j)) {
                        ans.push(new TreeNode(0, left, right));
                    }
                }
            }
            return (f[n] = ans);
        };
        return dfs(n);
    }
    
    
  • // Definition for a binary tree node.
    // #[derive(Debug, PartialEq, Eq)]
    // pub struct TreeNode {
    //   pub val: i32,
    //   pub left: Option<Rc<RefCell<TreeNode>>>,
    //   pub right: Option<Rc<RefCell<TreeNode>>>,
    // }
    //
    // impl TreeNode {
    //   #[inline]
    //   pub fn new(val: i32) -> Self {
    //     TreeNode {
    //       val,
    //       left: None,
    //       right: None
    //     }
    //   }
    // }
    
    impl TreeNode {
        pub fn new_with_node(
            left: Option<Rc<RefCell<TreeNode>>>,
            right: Option<Rc<RefCell<TreeNode>>>
        ) -> Self {
            Self {
                val: 0,
                left,
                right,
            }
        }
    }
    
    use std::rc::Rc;
    use std::cell::RefCell;
    impl Solution {
        #[allow(dead_code)]
        pub fn all_possible_fbt(n: i32) -> Vec<Option<Rc<RefCell<TreeNode>>>> {
            let mut record_vec = vec![vec![]; n as usize + 1];
            Self::dfs(n, &mut record_vec)
        }
    
        #[allow(dead_code)]
        fn dfs(
            n: i32,
            record_vec: &mut Vec<Vec<Option<Rc<RefCell<TreeNode>>>>>
        ) -> Vec<Option<Rc<RefCell<TreeNode>>>> {
            if record_vec[n as usize].len() != 0 {
                return record_vec[n as usize].clone();
            }
            if n == 1 {
                // Just directly return a single node
                return vec![Some(Rc::new(RefCell::new(TreeNode::new(0))))];
            }
            // Otherwise, need to construct return vector
            let mut ret_vec = Vec::new();
    
            // Enumerate the node number for left subtree from 0 -> n - 1
            for i in 0..n - 1 {
                // The number of right subtree node
                let j = n - i - 1;
                for left in Self::dfs(i, record_vec) {
                    for right in Self::dfs(j, record_vec) {
                        // Construct the ret vector
                        ret_vec.push(
                            Some(
                                Rc::new(
                                    RefCell::new(TreeNode::new_with_node(left.clone(), right.clone()))
                                )
                            )
                        );
                    }
                }
            }
    
            record_vec[n as usize] = ret_vec;
    
            record_vec[n as usize].clone()
        }
    }
    
    
  • /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     public int val;
     *     public TreeNode left;
     *     public TreeNode right;
     *     public TreeNode(int val=0, TreeNode left=null, TreeNode right=null) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    public class Solution {
        private List<TreeNode>[] f;
    
        public IList<TreeNode> AllPossibleFBT(int n) {
            f = new List<TreeNode>[n + 1];
            return Dfs(n);
        }
    
        private IList<TreeNode> Dfs(int n) {
            if (f[n] != null) {
                return f[n];
            }
            
            if (n == 1) {
                return new List<TreeNode> { new TreeNode() };
            }
            
            List<TreeNode> ans = new List<TreeNode>();
            for (int i = 0; i < n - 1; ++i) {
                int j = n - 1 - i;
                foreach (var left in Dfs(i)) {
                    foreach (var right in Dfs(j)) {
                        ans.Add(new TreeNode(0, left, right));
                    }
                }
            }
            f[n] = ans;
            return ans;
        }
    }
    

All Problems

All Solutions