Welcome to Subscribe On Youtube
874. Walking Robot Simulation
Description
A robot on an infinite XY-plane starts at point (0, 0)
facing north. The robot can receive a sequence of these three possible types of commands
:
-2
: Turn left90
degrees.-1
: Turn right90
degrees.1 <= k <= 9
: Move forwardk
units, one unit at a time.
Some of the grid squares are obstacles
. The ith
obstacle is at grid point obstacles[i] = (xi, yi)
. If the robot runs into an obstacle, then it will instead stay in its current location and move on to the next command.
Return the maximum Euclidean distance that the robot ever gets from the origin squared (i.e. if the distance is 5
, return 25
).
Note:
- North means +Y direction.
- East means +X direction.
- South means -Y direction.
- West means -X direction.
- There can be obstacle in [0,0].
Example 1:
Input: commands = [4,-1,3], obstacles = [] Output: 25 Explanation: The robot starts at (0, 0): 1. Move north 4 units to (0, 4). 2. Turn right. 3. Move east 3 units to (3, 4). The furthest point the robot ever gets from the origin is (3, 4), which squared is 32 + 42 = 25 units away.
Example 2:
Input: commands = [4,-1,4,-2,4], obstacles = [[2,4]] Output: 65 Explanation: The robot starts at (0, 0): 1. Move north 4 units to (0, 4). 2. Turn right. 3. Move east 1 unit and get blocked by the obstacle at (2, 4), robot is at (1, 4). 4. Turn left. 5. Move north 4 units to (1, 8). The furthest point the robot ever gets from the origin is (1, 8), which squared is 12 + 82 = 65 units away.
Example 3:
Input: commands = [6,-1,-1,6], obstacles = [] Output: 36 Explanation: The robot starts at (0, 0): 1. Move north 6 units to (0, 6). 2. Turn right. 3. Turn right. 4. Move south 6 units to (0, 0). The furthest point the robot ever gets from the origin is (0, 6), which squared is 62 = 36 units away.
Constraints:
1 <= commands.length <= 104
commands[i]
is either-2
,-1
, or an integer in the range[1, 9]
.0 <= obstacles.length <= 104
-3 * 104 <= xi, yi <= 3 * 104
- The answer is guaranteed to be less than
231
.
Solutions
Solution 1: Hash table + simulation
We define a direction array
We use a hash table
We use two variables
Next, we traverse each element
- If
, it means that the robot turns left byc=−2 degrees, that is,90 ;k=(k+3)mod4 - If
, it means that the robot turns right byc=−1 degrees, that is,90 ;k=(k+1)mod4 - Otherwise, it means that the robot moves forward by
units of length. We combine the robot’s current directionc with the direction arrayk , and we can get the increment of the robot on thedirs axis and thex axis. We add the increment ofy units of length toc andx respectively, and judge whether the new coordinatesy after each move are in the coordinates of obstacles. If not, update the answer(x,y) , otherwise stop simulating and perform the simulation of the next instruction.ans
Finally return the answer
Time complexity is
-
class Solution { public int robotSim(int[] commands, int[][] obstacles) { int[] dirs = {0, 1, 0, -1, 0}; Set<Integer> s = new HashSet<>(obstacles.length); for (var e : obstacles) { s.add(f(e[0], e[1])); } int ans = 0, k = 0; int x = 0, y = 0; for (int c : commands) { if (c == -2) { k = (k + 3) % 4; } else if (c == -1) { k = (k + 1) % 4; } else { while (c-- > 0) { int nx = x + dirs[k], ny = y + dirs[k + 1]; if (s.contains(f(nx, ny))) { break; } x = nx; y = ny; ans = Math.max(ans, x * x + y * y); } } } return ans; } private int f(int x, int y) { return x * 60010 + y; } }
-
class Solution { public: int robotSim(vector<int>& commands, vector<vector<int>>& obstacles) { int dirs[5] = {0, 1, 0, -1, 0}; auto f = [](int x, int y) { return x * 60010 + y; }; unordered_set<int> s; for (auto& e : obstacles) { s.insert(f(e[0], e[1])); } int ans = 0, k = 0; int x = 0, y = 0; for (int c : commands) { if (c == -2) { k = (k + 3) % 4; } else if (c == -1) { k = (k + 1) % 4; } else { while (c--) { int nx = x + dirs[k], ny = y + dirs[k + 1]; if (s.count(f(nx, ny))) { break; } x = nx; y = ny; ans = max(ans, x * x + y * y); } } } return ans; } };
-
class Solution: def robotSim(self, commands: List[int], obstacles: List[List[int]]) -> int: dirs = (0, 1, 0, -1, 0) s = {(x, y) for x, y in obstacles} ans = k = 0 x = y = 0 for c in commands: if c == -2: k = (k + 3) % 4 elif c == -1: k = (k + 1) % 4 else: for _ in range(c): nx, ny = x + dirs[k], y + dirs[k + 1] if (nx, ny) in s: break x, y = nx, ny ans = max(ans, x * x + y * y) return ans
-
func robotSim(commands []int, obstacles [][]int) (ans int) { dirs := [5]int{0, 1, 0, -1, 0} type pair struct{ x, y int } s := map[pair]bool{} for _, e := range obstacles { s[pair{e[0], e[1]}] = true } var x, y, k int for _, c := range commands { if c == -2 { k = (k + 3) % 4 } else if c == -1 { k = (k + 1) % 4 } else { for ; c > 0 && !s[pair{x + dirs[k], y + dirs[k+1]}]; c-- { x += dirs[k] y += dirs[k+1] ans = max(ans, x*x+y*y) } } } return }
-
function robotSim(commands: number[], obstacles: number[][]): number { const dirs = [0, 1, 0, -1, 0]; const s: Set<number> = new Set(); const f = (x: number, y: number) => x * 60010 + y; for (const [x, y] of obstacles) { s.add(f(x, y)); } let [ans, x, y, k] = [0, 0, 0, 0]; for (let c of commands) { if (c === -2) { k = (k + 3) % 4; } else if (c === -1) { k = (k + 1) % 4; } else { while (c-- > 0) { const [nx, ny] = [x + dirs[k], y + dirs[k + 1]]; if (s.has(f(nx, ny))) { break; } [x, y] = [nx, ny]; ans = Math.max(ans, x * x + y * y); } } } return ans; }