Welcome to Subscribe On Youtube

872. Leaf-Similar Trees

Description

Consider all the leaves of a binary tree, from left to right order, the values of those leaves form a leaf value sequence.

For example, in the given tree above, the leaf value sequence is (6, 7, 4, 9, 8).

Two binary trees are considered leaf-similar if their leaf value sequence is the same.

Return true if and only if the two given trees with head nodes root1 and root2 are leaf-similar.

 

Example 1:

Input: root1 = [3,5,1,6,2,9,8,null,null,7,4], root2 = [3,5,1,6,7,4,2,null,null,null,null,null,null,9,8]
Output: true

Example 2:

Input: root1 = [1,2,3], root2 = [1,3,2]
Output: false

 

Constraints:

  • The number of nodes in each tree will be in the range [1, 200].
  • Both of the given trees will have values in the range [0, 200].

Solutions

  • /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        public boolean leafSimilar(TreeNode root1, TreeNode root2) {
            List<Integer> l1 = dfs(root1);
            List<Integer> l2 = dfs(root2);
            return l1.equals(l2);
        }
    
        private List<Integer> dfs(TreeNode root) {
            if (root == null) {
                return new ArrayList<>();
            }
            List<Integer> ans = dfs(root.left);
            ans.addAll(dfs(root.right));
            if (ans.isEmpty()) {
                ans.add(root.val);
            }
            return ans;
        }
    }
    
  • /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
     *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
     *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
     * };
     */
    class Solution {
    public:
        bool leafSimilar(TreeNode* root1, TreeNode* root2) {
            return dfs(root1) == dfs(root2);
        }
    
        vector<int> dfs(TreeNode* root) {
            if (!root) return {};
            auto ans = dfs(root->left);
            auto right = dfs(root->right);
            ans.insert(ans.end(), right.begin(), right.end());
            if (ans.empty()) ans.push_back(root->val);
            return ans;
        }
    };
    
  • # Definition for a binary tree node.
    # class TreeNode:
    #     def __init__(self, val=0, left=None, right=None):
    #         self.val = val
    #         self.left = left
    #         self.right = right
    class Solution:
        def leafSimilar(self, root1: Optional[TreeNode], root2: Optional[TreeNode]) -> bool:
            def dfs(root):
                if root is None:
                    return []
                ans = dfs(root.left) + dfs(root.right)
                return ans or [root.val]
    
            return dfs(root1) == dfs(root2)
    
    
  • /**
     * Definition for a binary tree node.
     * type TreeNode struct {
     *     Val int
     *     Left *TreeNode
     *     Right *TreeNode
     * }
     */
    func leafSimilar(root1 *TreeNode, root2 *TreeNode) bool {
    	var dfs func(*TreeNode) []int
    	dfs = func(root *TreeNode) []int {
    		if root == nil {
    			return []int{}
    		}
    		ans := dfs(root.Left)
    		ans = append(ans, dfs(root.Right)...)
    		if len(ans) == 0 {
    			ans = append(ans, root.Val)
    		}
    		return ans
    	}
    	return reflect.DeepEqual(dfs(root1), dfs(root2))
    }
    
  • // Definition for a binary tree node.
    // #[derive(Debug, PartialEq, Eq)]
    // pub struct TreeNode {
    //   pub val: i32,
    //   pub left: Option<Rc<RefCell<TreeNode>>>,
    //   pub right: Option<Rc<RefCell<TreeNode>>>,
    // }
    //
    // impl TreeNode {
    //   #[inline]
    //   pub fn new(val: i32) -> Self {
    //     TreeNode {
    //       val,
    //       left: None,
    //       right: None
    //     }
    //   }
    // }
    use std::rc::Rc;
    use std::cell::RefCell;
    impl Solution {
        #[allow(dead_code)]
        pub fn leaf_similar(
            root1: Option<Rc<RefCell<TreeNode>>>,
            root2: Option<Rc<RefCell<TreeNode>>>
        ) -> bool {
            let mut one_vec: Vec<i32> = Vec::new();
            let mut two_vec: Vec<i32> = Vec::new();
    
            // Initialize the two vector
            Self::traverse(&mut one_vec, root1);
            Self::traverse(&mut two_vec, root2);
    
            one_vec == two_vec
        }
    
        #[allow(dead_code)]
        fn traverse(v: &mut Vec<i32>, root: Option<Rc<RefCell<TreeNode>>>) {
            if root.is_none() {
                return;
            }
            if Self::is_leaf_node(&root) {
                v.push(root.as_ref().unwrap().borrow().val);
            }
            let left = root.as_ref().unwrap().borrow().left.clone();
            let right = root.as_ref().unwrap().borrow().right.clone();
            Self::traverse(v, left);
            Self::traverse(v, right);
        }
    
        #[allow(dead_code)]
        fn is_leaf_node(node: &Option<Rc<RefCell<TreeNode>>>) -> bool {
            node.as_ref().unwrap().borrow().left.is_none() &&
                node.as_ref().unwrap().borrow().right.is_none()
        }
    }
    
    

All Problems

All Solutions