Welcome to Subscribe On Youtube

795. Number of Subarrays with Bounded Maximum

Description

Given an integer array nums and two integers left and right, return the number of contiguous non-empty subarrays such that the value of the maximum array element in that subarray is in the range [left, right].

The test cases are generated so that the answer will fit in a 32-bit integer.

 

Example 1:

Input: nums = [2,1,4,3], left = 2, right = 3
Output: 3
Explanation: There are three subarrays that meet the requirements: [2], [2, 1], [3].

Example 2:

Input: nums = [2,9,2,5,6], left = 2, right = 8
Output: 7

 

Constraints:

  • 1 <= nums.length <= 105
  • 0 <= nums[i] <= 109
  • 0 <= left <= right <= 109

Solutions

  • class Solution {
        public int numSubarrayBoundedMax(int[] nums, int left, int right) {
            return f(nums, right) - f(nums, left - 1);
        }
    
        private int f(int[] nums, int x) {
            int cnt = 0, t = 0;
            for (int v : nums) {
                t = v > x ? 0 : t + 1;
                cnt += t;
            }
            return cnt;
        }
    }
    
  • class Solution {
    public:
        int numSubarrayBoundedMax(vector<int>& nums, int left, int right) {
            auto f = [&](int x) {
                int cnt = 0, t = 0;
                for (int& v : nums) {
                    t = v > x ? 0 : t + 1;
                    cnt += t;
                }
                return cnt;
            };
            return f(right) - f(left - 1);
        }
    };
    
  • class Solution:
        def numSubarrayBoundedMax(self, nums: List[int], left: int, right: int) -> int:
            def f(x):
                cnt = t = 0
                for v in nums:
                    t = 0 if v > x else t + 1
                    cnt += t
                return cnt
    
            return f(right) - f(left - 1)
    
    
  • func numSubarrayBoundedMax(nums []int, left int, right int) int {
    	f := func(x int) (cnt int) {
    		t := 0
    		for _, v := range nums {
    			t++
    			if v > x {
    				t = 0
    			}
    			cnt += t
    		}
    		return
    	}
    	return f(right) - f(left-1)
    }
    

All Problems

All Solutions