Formatted question description: https://leetcode.ca/all/793.html

# 793. Preimage Size of Factorial Zeroes Function (Hard)

Let f(x) be the number of zeroes at the end of x!. (Recall that x! = 1 * 2 * 3 * ... * x, and by convention, 0! = 1.)

For example, f(3) = 0 because 3! = 6 has no zeroes at the end, while f(11) = 2 because 11! = 39916800 has 2 zeroes at the end. Given K, find how many non-negative integers x have the property that f(x) = K.

Example 1:
Input: K = 0
Output: 5
Explanation: 0!, 1!, 2!, 3!, and 4! end with K = 0 zeroes.

Example 2:
Input: K = 5
Output: 0
Explanation: There is no x such that x! ends in K = 5 zeroes.


Note:

• K will be an integer in the range [0, 10^9].

Companies:
Amazon

## Solution 1.

// OJ: https://leetcode.com/problems/preimage-size-of-factorial-zeroes-function/

// Time: O((logK)^2)
// Space: O(1)
class Solution {
private:
int getZeros(int i) {
int ans = 0;
while (i) {
ans += i;
i /= 5;
}
return ans;
}
public:
int preimageSizeFZF(int K) {
if (!K) return 5;
int i = 1;
while (getZeros(i) < K) i *= 5;
int L = i / 5, R = i;
while (L <= R) {
int M = (L + R) / 2;
int z = getZeros(M);
if (z == K) return 5;
if (z < K) L = M + 1;
else R = M - 1;
}
return 0;
}
};


Java

class Solution {
public int preimageSizeFZF(int K) {
long low = 0, high = (long) K * 5;
while (low <= high) {
long mid = (high - low) / 2 + low;
long endZeroes = endZeroes(mid);
if (endZeroes == K)
return 5;
else if (endZeroes > K)
high = mid - 1;
else
low = mid + 1;
}
return 0;
}

public long endZeroes(long num) {
long zeroes = 0;
while (num > 0) {
num /= 5;
zeroes += num;
}
return zeroes;
}
}