Welcome to Subscribe On Youtube
Formatted question description: https://leetcode.ca/all/764.html
764. Largest Plus Sign
Level
Medium
Description
In a 2D grid
from (0, 0) to (N-1, N-1), every cell contains a 1
, except those cells in the given list mines
which are 0
. What is the largest axis-aligned plus sign of 1
s contained in the grid? Return the order of the plus sign. If there is none, return 0.
An “axis-aligned plus sign of 1
s of order k” has some center grid[x][y] = 1
along with 4 arms of length k-1
going up, down, left, and right, and made of 1
s. This is demonstrated in the diagrams below. Note that there could be 0
s or 1
s beyond the arms of the plus sign, only the relevant area of the plus sign is checked for 1
s.
Examples of Axis-Aligned Plus Signs of Order k:
Order 1:
000
010
000
Order 2:
00000
00100
01110
00100
00000
Order 3:
0000000
0001000
0001000
0111110
0001000
0001000
0000000
Example 1:
Input: N = 5, mines = [[4, 2]]
Output: 2
Explanation:
11111
11111
11111
11111
11011
In the above grid, the largest plus sign can only be order 2.
Example 2:
Input: N = 2, mines = []
Output: 1
Explanation:
There is no plus sign of order 2, but there is of order 1.
Example 3:
Input: N = 1, mines = [[0, 0]]
Output: 0
Explanation:
There is no plus sign, so return 0.
Note:
N
will be an integer in the range[1, 500]
.mines
will have length at most5000
.mines[i]
will be length 2 and consist of integers in the range[0, N-1]
.- (Additionally, programs submitted in C, C++, or C# will be judged with a slightly smaller time limit.)
Solution
Use dynamic programming. For each row, loop from left to right and loop from right to left to determine the maximum order of the plus sign with the current cell as the center. For each column, loop from top to bottom and loop from bottom to top to determine the maximum order of the plus sign with the current cell as the center. Finally, return the maximum order possible.
-
class Solution { public int orderOfLargestPlusSign(int N, int[][] mines) { int maxOrder = 0; Set<String> minesSet = new HashSet<String>(); for (int[] mine : mines) minesSet.add(Arrays.toString(mine)); int[][] dp = new int[N][N]; for (int i = 0; i < N; i++) { int count = 0; for (int j = 0; j < N; j++) { int[] cell = {i, j}; if (minesSet.contains(Arrays.toString(cell))) count = 0; else count++; dp[i][j] = count; } count = 0; for (int j = N - 1; j >= 0; j--) { int[] cell = {i, j}; if (minesSet.contains(Arrays.toString(cell))) count = 0; else count++; dp[i][j] = Math.min(dp[i][j], count); } } for (int i = 0; i < N; i++) { int count = 0; for (int j = 0; j < N; j++) { int[] cell = {j, i}; if (minesSet.contains(Arrays.toString(cell))) count = 0; else count++; dp[j][i] = Math.min(dp[j][i], count); } count = 0; for (int j = N - 1; j >= 0; j--) { int[] cell = {j, i}; if (minesSet.contains(Arrays.toString(cell))) count = 0; else count++; dp[j][i] = Math.min(dp[j][i], count); maxOrder = Math.max(maxOrder, dp[j][i]); } } return maxOrder; } }
-
// OJ: https://leetcode.com/problems/largest-plus-sign/ // Time: O(N^2) // Space: O(N^2) class Solution { public: int orderOfLargestPlusSign(int N, vector<vector<int>>& A) { vector<vector<int>> M(N, vector<int>(N, 1)), H(N, vector<int>(N)), V(N, vector<int>(N)); for (auto &v : A) { M[v[0]][v[1]] = 0; } for (int i = 0; i < N; ++i) { stack<int> s; s.push(N); for (int j = N - 1; j >= 0; --j) { if (M[i][j] == 0) s.push(j); } int prev = -1; for (int j = 0; j < N; ++j) { if (M[i][j] == 0) { s.pop(); prev = j; } else H[i][j] = min(j - prev, s.top() - j); } } for (int j = 0; j < N; ++j) { stack<int> s; s.push(N); for (int i = N - 1; i >= 0; --i) { if (M[i][j] == 0) s.push(i); } int prev = -1; for (int i = 0; i < N; ++i) { if (M[i][j] == 0) { s.pop(); prev = i; } else V[i][j] = min(i - prev, s.top() - i); } } int ans = 0; for (int i = 0; i < N; ++i) { for (int j = 0; j < N; ++j) { ans = max(ans, min(H[i][j], V[i][j])); } } return ans; } };
-
class Solution: def orderOfLargestPlusSign(self, n: int, mines: List[List[int]]) -> int: dp = [[n] * n for _ in range(n)] for x, y in mines: dp[x][y] = 0 for i in range(n): left = right = up = down = 0 for j, k in zip(range(n), reversed(range(n))): left = left + 1 if dp[i][j] else 0 right = right + 1 if dp[i][k] else 0 up = up + 1 if dp[j][i] else 0 down = down + 1 if dp[k][i] else 0 dp[i][j] = min(dp[i][j], left) dp[i][k] = min(dp[i][k], right) dp[j][i] = min(dp[j][i], up) dp[k][i] = min(dp[k][i], down) return max(max(v) for v in dp) ############ 3 class Solution: def orderOfLargestPlusSign(self, N, mines): """ :type N: int :type mines: List[List[int]] :rtype: int """ res = 0 dp = [[0 for i in range(N)] for j in range(N)] s = set() for mine in mines: s.add(N * mine[0] + mine[1]) for i in range(N): cnt = 0 for j in range(N):#left cnt = 0 if N * i + j in s else cnt + 1 dp[i][j] = cnt cnt = 0 for j in range(N - 1, -1, -1):#right cnt = 0 if N * i + j in s else cnt + 1 dp[i][j] = min(dp[i][j], cnt) for j in range(N): cnt = 0 for i in range(N):#up cnt = 0 if N * i + j in s else cnt + 1 dp[i][j] = min(dp[i][j], cnt) cnt = 0 for i in range(N - 1, -1, -1):#down cnt = 0 if N * i + j in s else cnt + 1 dp[i][j] = min(dp[i][j], cnt) res = max(dp[i][j], res) return res
-
func orderOfLargestPlusSign(n int, mines [][]int) (ans int) { dp := make([][]int, n) for i := range dp { dp[i] = make([]int, n) for j := range dp[i] { dp[i][j] = n } } for _, e := range mines { dp[e[0]][e[1]] = 0 } for i := 0; i < n; i++ { var left, right, up, down int for j, k := 0, n-1; j < n; j, k = j+1, k-1 { left, right, up, down = left+1, right+1, up+1, down+1 if dp[i][j] == 0 { left = 0 } if dp[i][k] == 0 { right = 0 } if dp[j][i] == 0 { up = 0 } if dp[k][i] == 0 { down = 0 } dp[i][j] = min(dp[i][j], left) dp[i][k] = min(dp[i][k], right) dp[j][i] = min(dp[j][i], up) dp[k][i] = min(dp[k][i], down) } } for _, e := range dp { for _, v := range e { ans = max(ans, v) } } return } func min(a, b int) int { if a < b { return a } return b } func max(a, b int) int { if a > b { return a } return b }