Welcome to Subscribe On Youtube

684. Redundant Connection

Description

In this problem, a tree is an undirected graph that is connected and has no cycles.

You are given a graph that started as a tree with n nodes labeled from 1 to n, with one additional edge added. The added edge has two different vertices chosen from 1 to n, and was not an edge that already existed. The graph is represented as an array edges of length n where edges[i] = [ai, bi] indicates that there is an edge between nodes ai and bi in the graph.

Return an edge that can be removed so that the resulting graph is a tree of n nodes. If there are multiple answers, return the answer that occurs last in the input.

 

Example 1:

Input: edges = [[1,2],[1,3],[2,3]]
Output: [2,3]

Example 2:

Input: edges = [[1,2],[2,3],[3,4],[1,4],[1,5]]
Output: [1,4]

 

Constraints:

  • n == edges.length
  • 3 <= n <= 1000
  • edges[i].length == 2
  • 1 <= ai < bi <= edges.length
  • ai != bi
  • There are no repeated edges.
  • The given graph is connected.

Solutions

  • class Solution {
        private int[] p;
    
        public int[] findRedundantConnection(int[][] edges) {
            p = new int[1010];
            for (int i = 0; i < p.length; ++i) {
                p[i] = i;
            }
            for (int[] e : edges) {
                int a = e[0], b = e[1];
                if (find(a) == find(b)) {
                    return e;
                }
                p[find(a)] = find(b);
            }
            return null;
        }
    
        private int find(int x) {
            if (p[x] != x) {
                p[x] = find(p[x]);
            }
            return p[x];
        }
    }
    
  • class Solution {
    public:
        vector<int> p;
    
        vector<int> findRedundantConnection(vector<vector<int>>& edges) {
            p.resize(1010);
            for (int i = 0; i < p.size(); ++i) p[i] = i;
            for (auto& e : edges) {
                int a = e[0], b = e[1];
                if (find(a) == find(b)) return e;
                p[find(a)] = find(b);
            }
            return {};
        }
    
        int find(int x) {
            if (p[x] != x) p[x] = find(p[x]);
            return p[x];
        }
    };
    
  • class Solution:
        def findRedundantConnection(self, edges: List[List[int]]) -> List[int]:
            def find(x):
                if p[x] != x:
                    p[x] = find(p[x])
                return p[x]
    
            p = list(range(1010))
            for a, b in edges:
                if find(a) == find(b):
                    return [a, b]
                p[find(a)] = find(b)
            return []
    
    
  • func findRedundantConnection(edges [][]int) []int {
    	p := make([]int, 1010)
    	for i := range p {
    		p[i] = i
    	}
    	var find func(x int) int
    	find = func(x int) int {
    		if p[x] != x {
    			p[x] = find(p[x])
    		}
    		return p[x]
    	}
    	for _, e := range edges {
    		a, b := e[0], e[1]
    		if find(a) == find(b) {
    			return e
    		}
    		p[find(a)] = find(b)
    	}
    	return []int{}
    }
    
  • /**
     * @param {number[][]} edges
     * @return {number[]}
     */
    var findRedundantConnection = function (edges) {
        let p = Array.from({ length: 1010 }, (_, i) => i);
        function find(x) {
            if (p[x] != x) {
                p[x] = find(p[x]);
            }
            return p[x];
        }
        for (let [a, b] of edges) {
            if (find(a) == find(b)) {
                return [a, b];
            }
            p[find(a)] = find(b);
        }
        return [];
    };
    
    
  • function findRedundantConnection(edges: number[][]): number[] {
        const n = edges.length;
        const p: number[] = Array.from({ length: n }, (_, i) => i);
        const find = (x: number): number => {
            if (p[x] !== x) {
                p[x] = find(p[x]);
            }
            return p[x];
        };
        for (let i = 0; ; ++i) {
            const pa = find(edges[i][0] - 1);
            const pb = find(edges[i][1] - 1);
            if (pa === pb) {
                return edges[i];
            }
            p[pa] = pb;
        }
    }
    
    

All Problems

All Solutions