Welcome to Subscribe On Youtube

683. K Empty Slots

Description

You have n bulbs in a row numbered from 1 to n. Initially, all the bulbs are turned off. We turn on exactly one bulb every day until all bulbs are on after n days.

You are given an array bulbs of length n where bulbs[i] = x means that on the (i+1)th day, we will turn on the bulb at position x where i is 0-indexed and x is 1-indexed.

Given an integer k, return the minimum day number such that there exists two turned on bulbs that have exactly k bulbs between them that are all turned off. If there isn't such day, return -1.

 

Example 1:

Input: bulbs = [1,3,2], k = 1
Output: 2
Explanation:
On the first day: bulbs[0] = 1, first bulb is turned on: [1,0,0]
On the second day: bulbs[1] = 3, third bulb is turned on: [1,0,1]
On the third day: bulbs[2] = 2, second bulb is turned on: [1,1,1]
We return 2 because on the second day, there were two on bulbs with one off bulb between them.

Example 2:

Input: bulbs = [1,2,3], k = 1
Output: -1

 

Constraints:

  • n == bulbs.length
  • 1 <= n <= 2 * 104
  • 1 <= bulbs[i] <= n
  • bulbs is a permutation of numbers from 1 to n.
  • 0 <= k <= 2 * 104

Solutions

Solution 1: Binary Indexed Tree

We can use a Binary Indexed Tree to maintain the prefix sum of the bulbs. Every time we turn on a bulb, we update the corresponding position in the Binary Indexed Tree. Then we check if the $k$ bulbs to the left or right of the current bulb are all turned off and the $(k+1)$-th bulb is already turned on. If either of these conditions is met, we return the current day.

The time complexity is $O(n \times \log n)$ and the space complexity is $O(n)$, where $n$ is the number of bulbs.

  • class Solution {
        public int kEmptySlots(int[] bulbs, int k) {
            int n = bulbs.length;
            BinaryIndexedTree tree = new BinaryIndexedTree(n);
            boolean[] vis = new boolean[n + 1];
            for (int i = 1; i <= n; ++i) {
                int x = bulbs[i - 1];
                tree.update(x, 1);
                vis[x] = true;
                int y = x - k - 1;
                if (y > 0 && vis[y] && tree.query(x - 1) - tree.query(y) == 0) {
                    return i;
                }
                y = x + k + 1;
                if (y <= n && vis[y] && tree.query(y - 1) - tree.query(x) == 0) {
                    return i;
                }
            }
            return -1;
        }
    }
    
    class BinaryIndexedTree {
        private int n;
        private int[] c;
    
        public BinaryIndexedTree(int n) {
            this.n = n;
            this.c = new int[n + 1];
        }
    
        public void update(int x, int delta) {
            for (; x <= n; x += x & -x) {
                c[x] += delta;
            }
        }
    
        public int query(int x) {
            int s = 0;
            for (; x > 0; x -= x & -x) {
                s += c[x];
            }
            return s;
        }
    }
    
  • class BinaryIndexedTree {
    public:
        int n;
        vector<int> c;
    
        BinaryIndexedTree(int _n)
            : n(_n)
            , c(_n + 1) {}
    
        void update(int x, int delta) {
            for (; x <= n; x += x & -x) {
                c[x] += delta;
            }
        }
    
        int query(int x) {
            int s = 0;
            for (; x; x -= x & -x) {
                s += c[x];
            }
            return s;
        }
    };
    
    class Solution {
    public:
        int kEmptySlots(vector<int>& bulbs, int k) {
            int n = bulbs.size();
            BinaryIndexedTree* tree = new BinaryIndexedTree(n);
            bool vis[n + 1];
            memset(vis, false, sizeof(vis));
            for (int i = 1; i <= n; ++i) {
                int x = bulbs[i - 1];
                tree->update(x, 1);
                vis[x] = true;
                int y = x - k - 1;
                if (y > 0 && vis[y] && tree->query(x - 1) - tree->query(y) == 0) {
                    return i;
                }
                y = x + k + 1;
                if (y <= n && vis[y] && tree->query(y - 1) - tree->query(x) == 0) {
                    return i;
                }
            }
            return -1;
        }
    };
    
  • class BinaryIndexedTree:
        def __init__(self, n):
            self.n = n
            self.c = [0] * (n + 1)
    
        def update(self, x, delta):
            while x <= self.n:
                self.c[x] += delta
                x += x & -x
    
        def query(self, x):
            s = 0
            while x:
                s += self.c[x]
                x -= x & -x
            return s
    
    
    class Solution:
        def kEmptySlots(self, bulbs: List[int], k: int) -> int:
            n = len(bulbs)
            tree = BinaryIndexedTree(n)
            vis = [False] * (n + 1)
            for i, x in enumerate(bulbs, 1):
                tree.update(x, 1)
                vis[x] = True
                y = x - k - 1
                if y > 0 and vis[y] and tree.query(x - 1) - tree.query(y) == 0:
                    return i
                y = x + k + 1
                if y <= n and vis[y] and tree.query(y - 1) - tree.query(x) == 0:
                    return i
            return -1
    
    
  • type BinaryIndexedTree struct {
    	n int
    	c []int
    }
    
    func newBinaryIndexedTree(n int) *BinaryIndexedTree {
    	c := make([]int, n+1)
    	return &BinaryIndexedTree{n, c}
    }
    
    func (this *BinaryIndexedTree) update(x, delta int) {
    	for ; x <= this.n; x += x & -x {
    		this.c[x] += delta
    	}
    }
    
    func (this *BinaryIndexedTree) query(x int) (s int) {
    	for ; x > 0; x -= x & -x {
    		s += this.c[x]
    	}
    	return
    }
    
    func kEmptySlots(bulbs []int, k int) int {
    	n := len(bulbs)
    	tree := newBinaryIndexedTree(n)
    	vis := make([]bool, n+1)
    	for i, x := range bulbs {
    		tree.update(x, 1)
    		vis[x] = true
    		i++
    		y := x - k - 1
    		if y > 0 && vis[y] && tree.query(x-1)-tree.query(y) == 0 {
    			return i
    		}
    		y = x + k + 1
    		if y <= n && vis[y] && tree.query(y-1)-tree.query(x) == 0 {
    			return i
    		}
    	}
    	return -1
    }
    
  • class BinaryIndexedTree {
        private n: number;
        private c: number[];
    
        constructor(n: number) {
            this.n = n;
            this.c = Array(n + 1).fill(0);
        }
    
        public update(x: number, delta: number) {
            for (; x <= this.n; x += x & -x) {
                this.c[x] += delta;
            }
        }
    
        public query(x: number): number {
            let s = 0;
            for (; x > 0; x -= x & -x) {
                s += this.c[x];
            }
            return s;
        }
    }
    
    function kEmptySlots(bulbs: number[], k: number): number {
        const n = bulbs.length;
        const tree = new BinaryIndexedTree(n);
        const vis: boolean[] = Array(n + 1).fill(false);
        for (let i = 1; i <= n; ++i) {
            const x = bulbs[i - 1];
            tree.update(x, 1);
            vis[x] = true;
            let y = x - k - 1;
            if (y > 0 && vis[y] && tree.query(x - 1) - tree.query(y) === 0) {
                return i;
            }
            y = x + k + 1;
            if (y <= n && vis[y] && tree.query(y - 1) - tree.query(x) === 0) {
                return i;
            }
        }
        return -1;
    }
    
    

All Problems

All Solutions