Welcome to Subscribe On Youtube
664. Strange Printer
Description
There is a strange printer with the following two special properties:
- The printer can only print a sequence of the same character each time.
- At each turn, the printer can print new characters starting from and ending at any place and will cover the original existing characters.
Given a string s
, return the minimum number of turns the printer needed to print it.
Example 1:
Input: s = "aaabbb" Output: 2 Explanation: Print "aaa" first and then print "bbb".
Example 2:
Input: s = "aba" Output: 2 Explanation: Print "aaa" first and then print "b" from the second place of the string, which will cover the existing character 'a'.
Constraints:
1 <= s.length <= 100
s
consists of lowercase English letters.
Solutions
Solution 1: Dynamic Programming
We define $f[i][j]$ as the minimum operations to print $s[i..j]$, with the initial value $f[i][j]=\infty$, and the answer is $f[0][n-1]$, where $n$ is the length of string $s$.
Consider $f[i][j]$, if $s[i] = s[j]$, we can print $s[j]$ when print $s[i]$, so we can ignore $s[j]$ and continue to print $s[i+1..j-1]$. If $s[i] \neq s[j]$, we need to print the substring separately, i.e. $s[i..k]$ and $s[k+1..j]$, where $k \in [i,j)$. So we can have the following transition equation:
\[f[i][j]= \begin{cases} 1, & \text{if } i=j \\ f[i][j-1], & \text{if } s[i]=s[j] \\ \min_{i \leq k < j} \{f[i][k]+f[k+1][j]\}, & \text{otherwise} \end{cases}\]We can enumerate $i$ from large to small and $j$ from small to large, so that we can ensure that $f[i][j-1]$, $f[i][k]$ and $f[k+1][j]$ have been calculated when we calculate $f[i][j]$.
The time complexity is $O(n^3)$ and the space complexity is $O(n^2)$. Where $n$ is the length of string $s$.
-
class Solution { public int strangePrinter(String s) { final int inf = 1 << 30; int n = s.length(); int[][] f = new int[n][n]; for (var g : f) { Arrays.fill(g, inf); } for (int i = n - 1; i >= 0; --i) { f[i][i] = 1; for (int j = i + 1; j < n; ++j) { if (s.charAt(i) == s.charAt(j)) { f[i][j] = f[i][j - 1]; } else { for (int k = i; k < j; ++k) { f[i][j] = Math.min(f[i][j], f[i][k] + f[k + 1][j]); } } } } return f[0][n - 1]; } }
-
class Solution { public: int strangePrinter(string s) { int n = s.size(); int f[n][n]; memset(f, 0x3f, sizeof(f)); for (int i = n - 1; ~i; --i) { f[i][i] = 1; for (int j = i + 1; j < n; ++j) { if (s[i] == s[j]) { f[i][j] = f[i][j - 1]; } else { for (int k = i; k < j; ++k) { f[i][j] = min(f[i][j], f[i][k] + f[k + 1][j]); } } } } return f[0][n - 1]; } };
-
class Solution: def strangePrinter(self, s: str) -> int: n = len(s) f = [[inf] * n for _ in range(n)] for i in range(n - 1, -1, -1): f[i][i] = 1 for j in range(i + 1, n): if s[i] == s[j]: f[i][j] = f[i][j - 1] else: for k in range(i, j): f[i][j] = min(f[i][j], f[i][k] + f[k + 1][j]) return f[0][-1]
-
func strangePrinter(s string) int { n := len(s) f := make([][]int, n) for i := range f { f[i] = make([]int, n) for j := range f[i] { f[i][j] = 1 << 30 } } for i := n - 1; i >= 0; i-- { f[i][i] = 1 for j := i + 1; j < n; j++ { if s[i] == s[j] { f[i][j] = f[i][j-1] } else { for k := i; k < j; k++ { f[i][j] = min(f[i][j], f[i][k]+f[k+1][j]) } } } } return f[0][n-1] }
-
function strangePrinter(s: string): number { const n = s.length; const f: number[][] = new Array(n).fill(0).map(() => new Array(n).fill(1 << 30)); for (let i = n - 1; i >= 0; --i) { f[i][i] = 1; for (let j = i + 1; j < n; ++j) { if (s[i] === s[j]) { f[i][j] = f[i][j - 1]; } else { for (let k = i; k < j; ++k) { f[i][j] = Math.min(f[i][j], f[i][k] + f[k + 1][j]); } } } } return f[0][n - 1]; }