Welcome to Subscribe On Youtube

659. Split Array into Consecutive Subsequences

Description

You are given an integer array nums that is sorted in non-decreasing order.

Determine if it is possible to split nums into one or more subsequences such that both of the following conditions are true:

  • Each subsequence is a consecutive increasing sequence (i.e. each integer is exactly one more than the previous integer).
  • All subsequences have a length of 3 or more.

Return true if you can split nums according to the above conditions, or false otherwise.

A subsequence of an array is a new array that is formed from the original array by deleting some (can be none) of the elements without disturbing the relative positions of the remaining elements. (i.e., [1,3,5] is a subsequence of [1,2,3,4,5] while [1,3,2] is not).

 

Example 1:

Input: nums = [1,2,3,3,4,5]
Output: true
Explanation: nums can be split into the following subsequences:
[1,2,3,3,4,5] --> 1, 2, 3
[1,2,3,3,4,5] --> 3, 4, 5

Example 2:

Input: nums = [1,2,3,3,4,4,5,5]
Output: true
Explanation: nums can be split into the following subsequences:
[1,2,3,3,4,4,5,5] --> 1, 2, 3, 4, 5
[1,2,3,3,4,4,5,5] --> 3, 4, 5

Example 3:

Input: nums = [1,2,3,4,4,5]
Output: false
Explanation: It is impossible to split nums into consecutive increasing subsequences of length 3 or more.

 

Constraints:

  • 1 <= nums.length <= 104
  • -1000 <= nums[i] <= 1000
  • nums is sorted in non-decreasing order.

Solutions

  • class Solution {
        public boolean isPossible(int[] nums) {
            Map<Integer, PriorityQueue<Integer>> d = new HashMap<>();
            for (int v : nums) {
                if (d.containsKey(v - 1)) {
                    var q = d.get(v - 1);
                    d.computeIfAbsent(v, k -> new PriorityQueue<>()).offer(q.poll() + 1);
                    if (q.isEmpty()) {
                        d.remove(v - 1);
                    }
                } else {
                    d.computeIfAbsent(v, k -> new PriorityQueue<>()).offer(1);
                }
            }
            for (var v : d.values()) {
                if (v.peek() < 3) {
                    return false;
                }
            }
            return true;
        }
    }
    
  • class Solution {
    public:
        bool isPossible(vector<int>& nums) {
            unordered_map<int, priority_queue<int, vector<int>, greater<int>>> d;
            for (int v : nums) {
                if (d.count(v - 1)) {
                    auto& q = d[v - 1];
                    d[v].push(q.top() + 1);
                    q.pop();
                    if (q.empty()) {
                        d.erase(v - 1);
                    }
                } else {
                    d[v].push(1);
                }
            }
            for (auto& [_, v] : d) {
                if (v.top() < 3) {
                    return false;
                }
            }
            return true;
        }
    };
    
  • class Solution:
        def isPossible(self, nums: List[int]) -> bool:
            d = defaultdict(list)
            for v in nums:
                if h := d[v - 1]:
                    heappush(d[v], heappop(h) + 1)
                else:
                    heappush(d[v], 1)
            return all(not v or v and v[0] > 2 for v in d.values())
    
    
  • func isPossible(nums []int) bool {
    	d := map[int]*hp{}
    	for _, v := range nums {
    		if d[v] == nil {
    			d[v] = new(hp)
    		}
    		if h := d[v-1]; h != nil {
    			heap.Push(d[v], heap.Pop(h).(int)+1)
    			if h.Len() == 0 {
    				delete(d, v-1)
    			}
    		} else {
    			heap.Push(d[v], 1)
    		}
    	}
    	for _, q := range d {
    		if q.IntSlice[0] < 3 {
    			return false
    		}
    	}
    	return true
    }
    
    type hp struct{ sort.IntSlice }
    
    func (h *hp) Push(v any) { h.IntSlice = append(h.IntSlice, v.(int)) }
    func (h *hp) Pop() any {
    	a := h.IntSlice
    	v := a[len(a)-1]
    	h.IntSlice = a[:len(a)-1]
    	return v
    }
    

All Problems

All Solutions