Welcome to Subscribe On Youtube
-
import java.util.ArrayList; import java.util.LinkedList; import java.util.List; import java.util.Queue; /** Given a non-empty binary tree, return the average value of the nodes on each level in the form of an array. Example 1: Input: 3 / \ 9 20 / \ 15 7 Output: [3, 14.5, 11] Explanation: The average value of nodes on level 0 is 3, on level 1 is 14.5, and on level 2 is 11. Hence return [3, 14.5, 11]. Note: The range of node's value is in the range of 32-bit signed integer. */ public class Average_of_Levels_in_Binary_Tree { /** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ class Solution { public List<Double> averageOfLevels(TreeNode root) { List<Double> result = new ArrayList<>(); // bfs if (root == null) { return result; } Queue<TreeNode> q = new LinkedList<>(); q.offer(root); int currentLevelCount = 1; int nextLevelCount = 0; long currentLevelSum = 0; int count = 0; boolean isLevelLeftMost = false; while (!q.isEmpty()) { TreeNode current = q.poll(); currentLevelCount--; count++; /* overflow: Input: [2147483647,2147483647,2147483647] Output: [2147483647.0,-1.0] short: 32767 or 0x7fff int: 2147483647 or 0x7fffffff size_t: 18446744073709551615 or 0xffffffffffffffff streamsize: 9223372036854775807 or 0x7fffffffffffffff float: 3.40282e+38 or 0x1.fffffep+127 double: 1.79769e+308 or 0x1.fffffffffffffp+1023 */ // @note:@memorize: overflow // change sum from int to long currentLevelSum += current.val; if (current.left != null) { q.offer(current.left); nextLevelCount++; } if (current.right != null) { q.offer(current.right); nextLevelCount++; } if (currentLevelCount == 0) { currentLevelCount = nextLevelCount; nextLevelCount = 0; // calculate avg result.add(currentLevelSum * 1.0 / count); count = 0; currentLevelSum = 0; } } return result; } } } ############ /** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode() {} * TreeNode(int val) { this.val = val; } * TreeNode(int val, TreeNode left, TreeNode right) { * this.val = val; * this.left = left; * this.right = right; * } * } */ class Solution { public List<Double> averageOfLevels(TreeNode root) { List<Double> ans = new ArrayList<>(); Deque<TreeNode> q = new ArrayDeque<>(); q.offer(root); while (!q.isEmpty()) { int n = q.size(); long s = 0; for (int i = 0; i < n; ++i) { root = q.pollFirst(); s += root.val; if (root.left != null) { q.offer(root.left); } if (root.right != null) { q.offer(root.right); } } ans.add(s * 1.0 / n); } return ans; } }
-
// OJ: https://leetcode.com/problems/average-of-levels-in-binary-tree/ // Time: O(N) // Space: O(N) class Solution { public: vector<double> averageOfLevels(TreeNode* root) { if (!root) return {}; vector<double> ans; queue<TreeNode*> q; q.push(root); while (q.size()) { double cnt = q.size(), sum = 0; for (int i = 0; i < cnt; ++i) { root = q.front(); q.pop(); sum += root->val; if (root->left) q.push(root->left); if (root->right) q.push(root->right); } ans.push_back(sum / cnt); } return ans; } };
-
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def averageOfLevels(self, root: Optional[TreeNode]) -> List[float]: q = deque([root]) ans = [] while q: s, n = 0, len(q) for _ in range(n): root = q.popleft() s += root.val if root.left: q.append(root.left) if root.right: q.append(root.right) ans.append(s / n) return ans ############ # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None from collections import deque class Solution(object): def averageOfLevels(self, root): """ :type root: TreeNode :rtype: List[float] """ ans = [] queue = deque([root]) while queue: s = 0 n = len(queue) for _ in range(n): top = queue.popleft() s += top.val if top.left: queue.append(top.left) if top.right: queue.append(top.right) ans.append(float(s) / n) return ans
-
/** * Definition for a binary tree node. * type TreeNode struct { * Val int * Left *TreeNode * Right *TreeNode * } */ func averageOfLevels(root *TreeNode) []float64 { q := []*TreeNode{root} ans := []float64{} for len(q) > 0 { n := len(q) s := 0 for i := 0; i < n; i++ { root = q[0] q = q[1:] s += root.Val if root.Left != nil { q = append(q, root.Left) } if root.Right != nil { q = append(q, root.Right) } } ans = append(ans, float64(s)/float64(n)) } return ans }
-
/** * Definition for a binary tree node. * function TreeNode(val, left, right) { * this.val = (val===undefined ? 0 : val) * this.left = (left===undefined ? null : left) * this.right = (right===undefined ? null : right) * } */ /** * @param {TreeNode} root * @return {number[]} */ var averageOfLevels = function (root) { let q = [root]; let ans = []; while (q.length) { const n = q.length; let s = 0; for (let i = 0; i < n; ++i) { root = q.shift(); s += root.val; if (root.left) { q.push(root.left); } if (root.right) { q.push(root.right); } } ans.push(s / n); } return ans; };
-
// Definition for a binary tree node. // #[derive(Debug, PartialEq, Eq)] // pub struct TreeNode { // pub val: i32, // pub left: Option<Rc<RefCell<TreeNode>>>, // pub right: Option<Rc<RefCell<TreeNode>>>, // } // // impl TreeNode { // #[inline] // pub fn new(val: i32) -> Self { // TreeNode { // val, // left: None, // right: None // } // } // } use std::rc::Rc; use std::cell::RefCell; use std::collections::VecDeque; impl Solution { pub fn average_of_levels(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<f64> { if root.is_none() { return Vec::new(); } let mut q = VecDeque::new(); q.push_back(Rc::clone(&root.unwrap())); let mut ans = Vec::new(); while !q.is_empty() { let n = q.len(); let mut sum = 0.0; for _ in 0..n { let node = q.pop_front().unwrap(); sum += node.borrow().val as f64; if node.borrow().left.is_some() { q.push_back(Rc::clone(node.borrow().left.as_ref().unwrap())); } if node.borrow().right.is_some() { q.push_back(Rc::clone(node.borrow().right.as_ref().unwrap())); } } ans.push(sum / n as f64); } ans } }
-
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ class Solution { public List<Double> averageOfLevels(TreeNode root) { List<Double> averages = new ArrayList<Double>(); if (root == null) return averages; Queue<TreeNode> queue = new LinkedList<TreeNode>(); queue.offer(root); while (!queue.isEmpty()) { double sum = 0; int size = queue.size(); for (int i = 0; i < size; i++) { TreeNode node = queue.poll(); sum += node.val; TreeNode left = node.left, right = node.right; if (left != null) queue.offer(left); if (right != null) queue.offer(right); } double average = sum / size; averages.add(average); } return averages; } } ############ /** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode() {} * TreeNode(int val) { this.val = val; } * TreeNode(int val, TreeNode left, TreeNode right) { * this.val = val; * this.left = left; * this.right = right; * } * } */ class Solution { public List<Double> averageOfLevels(TreeNode root) { List<Double> ans = new ArrayList<>(); Deque<TreeNode> q = new ArrayDeque<>(); q.offer(root); while (!q.isEmpty()) { int n = q.size(); long s = 0; for (int i = 0; i < n; ++i) { root = q.pollFirst(); s += root.val; if (root.left != null) { q.offer(root.left); } if (root.right != null) { q.offer(root.right); } } ans.add(s * 1.0 / n); } return ans; } }
-
// OJ: https://leetcode.com/problems/average-of-levels-in-binary-tree/ // Time: O(N) // Space: O(N) class Solution { public: vector<double> averageOfLevels(TreeNode* root) { if (!root) return {}; vector<double> ans; queue<TreeNode*> q; q.push(root); while (q.size()) { double cnt = q.size(), sum = 0; for (int i = 0; i < cnt; ++i) { root = q.front(); q.pop(); sum += root->val; if (root->left) q.push(root->left); if (root->right) q.push(root->right); } ans.push_back(sum / cnt); } return ans; } };
-
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def averageOfLevels(self, root: Optional[TreeNode]) -> List[float]: q = deque([root]) ans = [] while q: s, n = 0, len(q) for _ in range(n): root = q.popleft() s += root.val if root.left: q.append(root.left) if root.right: q.append(root.right) ans.append(s / n) return ans ############ # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None from collections import deque class Solution(object): def averageOfLevels(self, root): """ :type root: TreeNode :rtype: List[float] """ ans = [] queue = deque([root]) while queue: s = 0 n = len(queue) for _ in range(n): top = queue.popleft() s += top.val if top.left: queue.append(top.left) if top.right: queue.append(top.right) ans.append(float(s) / n) return ans
-
/** * Definition for a binary tree node. * type TreeNode struct { * Val int * Left *TreeNode * Right *TreeNode * } */ func averageOfLevels(root *TreeNode) []float64 { q := []*TreeNode{root} ans := []float64{} for len(q) > 0 { n := len(q) s := 0 for i := 0; i < n; i++ { root = q[0] q = q[1:] s += root.Val if root.Left != nil { q = append(q, root.Left) } if root.Right != nil { q = append(q, root.Right) } } ans = append(ans, float64(s)/float64(n)) } return ans }
-
/** * Definition for a binary tree node. * function TreeNode(val, left, right) { * this.val = (val===undefined ? 0 : val) * this.left = (left===undefined ? null : left) * this.right = (right===undefined ? null : right) * } */ /** * @param {TreeNode} root * @return {number[]} */ var averageOfLevels = function (root) { let q = [root]; let ans = []; while (q.length) { const n = q.length; let s = 0; for (let i = 0; i < n; ++i) { root = q.shift(); s += root.val; if (root.left) { q.push(root.left); } if (root.right) { q.push(root.right); } } ans.push(s / n); } return ans; };
-
// Definition for a binary tree node. // #[derive(Debug, PartialEq, Eq)] // pub struct TreeNode { // pub val: i32, // pub left: Option<Rc<RefCell<TreeNode>>>, // pub right: Option<Rc<RefCell<TreeNode>>>, // } // // impl TreeNode { // #[inline] // pub fn new(val: i32) -> Self { // TreeNode { // val, // left: None, // right: None // } // } // } use std::rc::Rc; use std::cell::RefCell; use std::collections::VecDeque; impl Solution { pub fn average_of_levels(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<f64> { if root.is_none() { return Vec::new(); } let mut q = VecDeque::new(); q.push_back(Rc::clone(&root.unwrap())); let mut ans = Vec::new(); while !q.is_empty() { let n = q.len(); let mut sum = 0.0; for _ in 0..n { let node = q.pop_front().unwrap(); sum += node.borrow().val as f64; if node.borrow().left.is_some() { q.push_back(Rc::clone(node.borrow().left.as_ref().unwrap())); } if node.borrow().right.is_some() { q.push_back(Rc::clone(node.borrow().right.as_ref().unwrap())); } } ans.push(sum / n as f64); } ans } }