Welcome to Subscribe On Youtube
  • import java.util.ArrayList;
    import java.util.LinkedList;
    import java.util.List;
    import java.util.Queue;
    
    /**
    
     Given a non-empty binary tree, return the average value of the nodes on each level in the form of an array.
     Example 1:
     Input:
     3
     / \
     9  20
     /  \
     15   7
     Output: [3, 14.5, 11]
     Explanation:
     The average value of nodes on level 0 is 3,  on level 1 is 14.5, and on level 2 is 11. Hence return [3, 14.5, 11].
     Note:
     The range of node's value is in the range of 32-bit signed integer.
    
     */
    
    public class Average_of_Levels_in_Binary_Tree {
    
        /**
         * Definition for a binary tree node.
         * public class TreeNode {
         *     int val;
         *     TreeNode left;
         *     TreeNode right;
         *     TreeNode(int x) { val = x; }
         * }
         */
        class Solution {
            public List<Double> averageOfLevels(TreeNode root) {
    
                List<Double> result = new ArrayList<>();
    
                // bfs
                if (root == null) {
                    return result;
                }
    
                Queue<TreeNode> q = new LinkedList<>();
                q.offer(root);
                int currentLevelCount = 1;
                int nextLevelCount = 0;
    
                long currentLevelSum = 0;
                int count = 0;
    
                boolean isLevelLeftMost = false;
    
                while (!q.isEmpty()) {
                    TreeNode current = q.poll();
                    currentLevelCount--;
                    count++;
    
                    /*
    
                    overflow:
                    Input:
                            [2147483647,2147483647,2147483647]
                    Output:
                               [2147483647.0,-1.0]
    
    
    
                    short: 32767 or 0x7fff
                    int: 2147483647 or 0x7fffffff
                    size_t: 18446744073709551615 or 0xffffffffffffffff
                    streamsize: 9223372036854775807 or 0x7fffffffffffffff
                    float: 3.40282e+38 or 0x1.fffffep+127
                    double: 1.79769e+308 or 0x1.fffffffffffffp+1023
    
                    */
    
    
                    // @note:@memorize: overflow
                    // change sum from int to long
                    currentLevelSum += current.val;
    
                    if (current.left != null) {
                        q.offer(current.left);
                        nextLevelCount++;
                    }
                    if (current.right != null) {
                        q.offer(current.right);
                        nextLevelCount++;
                    }
    
                    if (currentLevelCount == 0) {
                        currentLevelCount = nextLevelCount;
                        nextLevelCount = 0;
    
                        // calculate avg
                        result.add(currentLevelSum * 1.0 / count);
    
                        count = 0;
                        currentLevelSum = 0;
                    }
                }
    
                return result;
            }
        }
    }
    
    ############
    
    /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        public List<Double> averageOfLevels(TreeNode root) {
            List<Double> ans = new ArrayList<>();
            Deque<TreeNode> q = new ArrayDeque<>();
            q.offer(root);
            while (!q.isEmpty()) {
                int n = q.size();
                long s = 0;
                for (int i = 0; i < n; ++i) {
                    root = q.pollFirst();
                    s += root.val;
                    if (root.left != null) {
                        q.offer(root.left);
                    }
                    if (root.right != null) {
                        q.offer(root.right);
                    }
                }
                ans.add(s * 1.0 / n);
            }
            return ans;
        }
    }
    
  • // OJ: https://leetcode.com/problems/average-of-levels-in-binary-tree/
    // Time: O(N)
    // Space: O(N)
    class Solution {
    public:
        vector<double> averageOfLevels(TreeNode* root) {
            if (!root) return {};
            vector<double> ans;
            queue<TreeNode*> q;
            q.push(root);
            while (q.size()) {
                double cnt = q.size(), sum = 0;
                for (int i = 0; i < cnt; ++i) {
                    root = q.front();
                    q.pop();
                    sum += root->val;
                    if (root->left) q.push(root->left);
                    if (root->right) q.push(root->right);
                }
                ans.push_back(sum / cnt);
            }
            return ans;
        }
    };
    
  • # Definition for a binary tree node.
    # class TreeNode:
    #     def __init__(self, val=0, left=None, right=None):
    #         self.val = val
    #         self.left = left
    #         self.right = right
    class Solution:
        def averageOfLevels(self, root: Optional[TreeNode]) -> List[float]:
            q = deque([root])
            ans = []
            while q:
                s, n = 0, len(q)
                for _ in range(n):
                    root = q.popleft()
                    s += root.val
                    if root.left:
                        q.append(root.left)
                    if root.right:
                        q.append(root.right)
                ans.append(s / n)
            return ans
    
    ############
    
    # Definition for a binary tree node.
    # class TreeNode(object):
    #     def __init__(self, x):
    #         self.val = x
    #         self.left = None
    #         self.right = None
    from collections import deque
    
    
    class Solution(object):
      def averageOfLevels(self, root):
        """
        :type root: TreeNode
        :rtype: List[float]
        """
        ans = []
        queue = deque([root])
        while queue:
          s = 0
          n = len(queue)
          for _ in range(n):
            top = queue.popleft()
            s += top.val
            if top.left:
              queue.append(top.left)
            if top.right:
              queue.append(top.right)
          ans.append(float(s) / n)
        return ans
    
    
  • /**
     * Definition for a binary tree node.
     * type TreeNode struct {
     *     Val int
     *     Left *TreeNode
     *     Right *TreeNode
     * }
     */
    func averageOfLevels(root *TreeNode) []float64 {
    	q := []*TreeNode{root}
    	ans := []float64{}
    	for len(q) > 0 {
    		n := len(q)
    		s := 0
    		for i := 0; i < n; i++ {
    			root = q[0]
    			q = q[1:]
    			s += root.Val
    			if root.Left != nil {
    				q = append(q, root.Left)
    			}
    			if root.Right != nil {
    				q = append(q, root.Right)
    			}
    		}
    		ans = append(ans, float64(s)/float64(n))
    	}
    	return ans
    }
    
  • /**
     * Definition for a binary tree node.
     * function TreeNode(val, left, right) {
     *     this.val = (val===undefined ? 0 : val)
     *     this.left = (left===undefined ? null : left)
     *     this.right = (right===undefined ? null : right)
     * }
     */
    /**
     * @param {TreeNode} root
     * @return {number[]}
     */
    var averageOfLevels = function (root) {
        let q = [root];
        let ans = [];
        while (q.length) {
            const n = q.length;
            let s = 0;
            for (let i = 0; i < n; ++i) {
                root = q.shift();
                s += root.val;
                if (root.left) {
                    q.push(root.left);
                }
                if (root.right) {
                    q.push(root.right);
                }
            }
            ans.push(s / n);
        }
        return ans;
    };
    
    
  • // Definition for a binary tree node.
    // #[derive(Debug, PartialEq, Eq)]
    // pub struct TreeNode {
    //   pub val: i32,
    //   pub left: Option<Rc<RefCell<TreeNode>>>,
    //   pub right: Option<Rc<RefCell<TreeNode>>>,
    // }
    //
    // impl TreeNode {
    //   #[inline]
    //   pub fn new(val: i32) -> Self {
    //     TreeNode {
    //       val,
    //       left: None,
    //       right: None
    //     }
    //   }
    // }
    use std::rc::Rc;
    use std::cell::RefCell;
    use std::collections::VecDeque;
    impl Solution {
        pub fn average_of_levels(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<f64> {
            if root.is_none() {
                return Vec::new();
            }
    
            let mut q = VecDeque::new();
            q.push_back(Rc::clone(&root.unwrap()));
            let mut ans = Vec::new();
            while !q.is_empty() {
                let n = q.len();
                let mut sum = 0.0;
                for _ in 0..n {
                    let node = q.pop_front().unwrap();
                    sum += node.borrow().val as f64;
                    if node.borrow().left.is_some() {
                        q.push_back(Rc::clone(node.borrow().left.as_ref().unwrap()));
                    }
                    if node.borrow().right.is_some() {
                        q.push_back(Rc::clone(node.borrow().right.as_ref().unwrap()));
                    }
                }
                ans.push(sum / n as f64);
            }
            ans
        }
    }
    
    
  • /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode(int x) { val = x; }
     * }
     */
    class Solution {
        public List<Double> averageOfLevels(TreeNode root) {
            List<Double> averages = new ArrayList<Double>();
            if (root == null)
                return averages;
            Queue<TreeNode> queue = new LinkedList<TreeNode>();
            queue.offer(root);
            while (!queue.isEmpty()) {
                double sum = 0;
                int size = queue.size();
                for (int i = 0; i < size; i++) {
                    TreeNode node = queue.poll();
                    sum += node.val;
                    TreeNode left = node.left, right = node.right;
                    if (left != null)
                        queue.offer(left);
                    if (right != null)
                        queue.offer(right);
                }
                double average = sum / size;
                averages.add(average);
            }
            return averages;
        }
    }
    
    ############
    
    /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        public List<Double> averageOfLevels(TreeNode root) {
            List<Double> ans = new ArrayList<>();
            Deque<TreeNode> q = new ArrayDeque<>();
            q.offer(root);
            while (!q.isEmpty()) {
                int n = q.size();
                long s = 0;
                for (int i = 0; i < n; ++i) {
                    root = q.pollFirst();
                    s += root.val;
                    if (root.left != null) {
                        q.offer(root.left);
                    }
                    if (root.right != null) {
                        q.offer(root.right);
                    }
                }
                ans.add(s * 1.0 / n);
            }
            return ans;
        }
    }
    
  • // OJ: https://leetcode.com/problems/average-of-levels-in-binary-tree/
    // Time: O(N)
    // Space: O(N)
    class Solution {
    public:
        vector<double> averageOfLevels(TreeNode* root) {
            if (!root) return {};
            vector<double> ans;
            queue<TreeNode*> q;
            q.push(root);
            while (q.size()) {
                double cnt = q.size(), sum = 0;
                for (int i = 0; i < cnt; ++i) {
                    root = q.front();
                    q.pop();
                    sum += root->val;
                    if (root->left) q.push(root->left);
                    if (root->right) q.push(root->right);
                }
                ans.push_back(sum / cnt);
            }
            return ans;
        }
    };
    
  • # Definition for a binary tree node.
    # class TreeNode:
    #     def __init__(self, val=0, left=None, right=None):
    #         self.val = val
    #         self.left = left
    #         self.right = right
    class Solution:
        def averageOfLevels(self, root: Optional[TreeNode]) -> List[float]:
            q = deque([root])
            ans = []
            while q:
                s, n = 0, len(q)
                for _ in range(n):
                    root = q.popleft()
                    s += root.val
                    if root.left:
                        q.append(root.left)
                    if root.right:
                        q.append(root.right)
                ans.append(s / n)
            return ans
    
    ############
    
    # Definition for a binary tree node.
    # class TreeNode(object):
    #     def __init__(self, x):
    #         self.val = x
    #         self.left = None
    #         self.right = None
    from collections import deque
    
    
    class Solution(object):
      def averageOfLevels(self, root):
        """
        :type root: TreeNode
        :rtype: List[float]
        """
        ans = []
        queue = deque([root])
        while queue:
          s = 0
          n = len(queue)
          for _ in range(n):
            top = queue.popleft()
            s += top.val
            if top.left:
              queue.append(top.left)
            if top.right:
              queue.append(top.right)
          ans.append(float(s) / n)
        return ans
    
    
  • /**
     * Definition for a binary tree node.
     * type TreeNode struct {
     *     Val int
     *     Left *TreeNode
     *     Right *TreeNode
     * }
     */
    func averageOfLevels(root *TreeNode) []float64 {
    	q := []*TreeNode{root}
    	ans := []float64{}
    	for len(q) > 0 {
    		n := len(q)
    		s := 0
    		for i := 0; i < n; i++ {
    			root = q[0]
    			q = q[1:]
    			s += root.Val
    			if root.Left != nil {
    				q = append(q, root.Left)
    			}
    			if root.Right != nil {
    				q = append(q, root.Right)
    			}
    		}
    		ans = append(ans, float64(s)/float64(n))
    	}
    	return ans
    }
    
  • /**
     * Definition for a binary tree node.
     * function TreeNode(val, left, right) {
     *     this.val = (val===undefined ? 0 : val)
     *     this.left = (left===undefined ? null : left)
     *     this.right = (right===undefined ? null : right)
     * }
     */
    /**
     * @param {TreeNode} root
     * @return {number[]}
     */
    var averageOfLevels = function (root) {
        let q = [root];
        let ans = [];
        while (q.length) {
            const n = q.length;
            let s = 0;
            for (let i = 0; i < n; ++i) {
                root = q.shift();
                s += root.val;
                if (root.left) {
                    q.push(root.left);
                }
                if (root.right) {
                    q.push(root.right);
                }
            }
            ans.push(s / n);
        }
        return ans;
    };
    
    
  • // Definition for a binary tree node.
    // #[derive(Debug, PartialEq, Eq)]
    // pub struct TreeNode {
    //   pub val: i32,
    //   pub left: Option<Rc<RefCell<TreeNode>>>,
    //   pub right: Option<Rc<RefCell<TreeNode>>>,
    // }
    //
    // impl TreeNode {
    //   #[inline]
    //   pub fn new(val: i32) -> Self {
    //     TreeNode {
    //       val,
    //       left: None,
    //       right: None
    //     }
    //   }
    // }
    use std::rc::Rc;
    use std::cell::RefCell;
    use std::collections::VecDeque;
    impl Solution {
        pub fn average_of_levels(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<f64> {
            if root.is_none() {
                return Vec::new();
            }
    
            let mut q = VecDeque::new();
            q.push_back(Rc::clone(&root.unwrap()));
            let mut ans = Vec::new();
            while !q.is_empty() {
                let n = q.len();
                let mut sum = 0.0;
                for _ in 0..n {
                    let node = q.pop_front().unwrap();
                    sum += node.borrow().val as f64;
                    if node.borrow().left.is_some() {
                        q.push_back(Rc::clone(node.borrow().left.as_ref().unwrap()));
                    }
                    if node.borrow().right.is_some() {
                        q.push_back(Rc::clone(node.borrow().right.as_ref().unwrap()));
                    }
                }
                ans.push(sum / n as f64);
            }
            ans
        }
    }
    
    

All Problems

All Solutions