Welcome to Subscribe On Youtube
611. Valid Triangle Number
Description
Given an integer array nums
, return the number of triplets chosen from the array that can make triangles if we take them as side lengths of a triangle.
Example 1:
Input: nums = [2,2,3,4] Output: 3 Explanation: Valid combinations are: 2,3,4 (using the first 2) 2,3,4 (using the second 2) 2,2,3
Example 2:
Input: nums = [4,2,3,4] Output: 4
Constraints:
1 <= nums.length <= 1000
0 <= nums[i] <= 1000
Solutions
First enumerate two edges, and then use binary search to locate the third edge.
-
class Solution { public int triangleNumber(int[] nums) { Arrays.sort(nums); int n = nums.length; int res = 0; for (int i = n - 1; i >= 2; --i) { int l = 0, r = i - 1; while (l < r) { if (nums[l] + nums[r] > nums[i]) { res += r - l; --r; } else { ++l; } } } return res; } }
-
class Solution { public: int triangleNumber(vector<int>& nums) { sort(nums.begin(), nums.end()); int ans = 0, n = nums.size(); for (int i = 0; i < n - 2; ++i) { for (int j = i + 1; j < n - 1; ++j) { int k = lower_bound(nums.begin() + j + 1, nums.end(), nums[i] + nums[j]) - nums.begin() - 1; ans += k - j; } } return ans; } };
-
class Solution: def triangleNumber(self, nums: List[int]) -> int: nums.sort() ans, n = 0, len(nums) for i in range(n - 2): for j in range(i + 1, n - 1): k = bisect_left(nums, nums[i] + nums[j], lo=j + 1) - 1 ans += k - j return ans
-
func triangleNumber(nums []int) int { sort.Ints(nums) ans := 0 for i, n := 0, len(nums); i < n-2; i++ { for j := i + 1; j < n-1; j++ { left, right := j+1, n for left < right { mid := (left + right) >> 1 if nums[mid] >= nums[i]+nums[j] { right = mid } else { left = mid + 1 } } ans += left - j - 1 } } return ans }
-
function triangleNumber(nums: number[]): number { nums.sort((a, b) => a - b); let n = nums.length; let ans = 0; for (let i = n - 1; i >= 2; i--) { let left = 0, right = i - 1; while (left < right) { if (nums[left] + nums[right] > nums[i]) { ans += right - left; right--; } else { left++; } } } return ans; }
-
impl Solution { pub fn triangle_number(mut nums: Vec<i32>) -> i32 { nums.sort(); let n = nums.len(); let mut res = 0; for i in (2..n).rev() { let mut left = 0; let mut right = i - 1; while left < right { if nums[left] + nums[right] > nums[i] { res += right - left; right -= 1; } else { left += 1; } } } res as i32 } }