Welcome to Subscribe On Youtube
600. Non-negative Integers without Consecutive Ones
Description
Given a positive integer n
, return the number of the integers in the range [0, n]
whose binary representations do not contain consecutive ones.
Example 1:
Input: n = 5 Output: 5 Explanation: Here are the non-negative integers <= 5 with their corresponding binary representations: 0 : 0 1 : 1 2 : 10 3 : 11 4 : 100 5 : 101 Among them, only integer 3 disobeys the rule (two consecutive ones) and the other 5 satisfy the rule.
Example 2:
Input: n = 1 Output: 2
Example 3:
Input: n = 2 Output: 3
Constraints:
1 <= n <= 109
Solutions
-
class Solution { private int[] a = new int[33]; private int[][] dp = new int[33][2]; public int findIntegers(int n) { int len = 0; while (n > 0) { a[++len] = n & 1; n >>= 1; } for (var e : dp) { Arrays.fill(e, -1); } return dfs(len, 0, true); } private int dfs(int pos, int pre, boolean limit) { if (pos <= 0) { return 1; } if (!limit && dp[pos][pre] != -1) { return dp[pos][pre]; } int up = limit ? a[pos] : 1; int ans = 0; for (int i = 0; i <= up; ++i) { if (!(pre == 1 && i == 1)) { ans += dfs(pos - 1, i, limit && i == up); } } if (!limit) { dp[pos][pre] = ans; } return ans; } }
-
class Solution { public: int a[33]; int dp[33][2]; int findIntegers(int n) { int len = 0; while (n) { a[++len] = n & 1; n >>= 1; } memset(dp, -1, sizeof dp); return dfs(len, 0, true); } int dfs(int pos, int pre, bool limit) { if (pos <= 0) { return 1; } if (!limit && dp[pos][pre] != -1) { return dp[pos][pre]; } int ans = 0; int up = limit ? a[pos] : 1; for (int i = 0; i <= up; ++i) { if (!(pre == 1 && i == 1)) { ans += dfs(pos - 1, i, limit && i == up); } } if (!limit) { dp[pos][pre] = ans; } return ans; } };
-
class Solution: def findIntegers(self, n: int) -> int: @cache def dfs(pos, pre, limit): if pos <= 0: return 1 up = a[pos] if limit else 1 ans = 0 for i in range(up + 1): if pre == 1 and i == 1: continue ans += dfs(pos - 1, i, limit and i == up) return ans a = [0] * 33 l = 0 while n: l += 1 a[l] = n & 1 n >>= 1 return dfs(l, 0, True)
-
func findIntegers(n int) int { a := make([]int, 33) dp := make([][2]int, 33) for i := range dp { dp[i] = [2]int{-1, -1} } l := 0 for n > 0 { l++ a[l] = n & 1 n >>= 1 } var dfs func(int, int, bool) int dfs = func(pos, pre int, limit bool) int { if pos <= 0 { return 1 } if !limit && dp[pos][pre] != -1 { return dp[pos][pre] } up := 1 if limit { up = a[pos] } ans := 0 for i := 0; i <= up; i++ { if !(pre == 1 && i == 1) { ans += dfs(pos-1, i, limit && i == up) } } if !limit { dp[pos][pre] = ans } return ans } return dfs(l, 0, true) }
-
function findIntegers(n: number): number { const s = n.toString(2); const m = s.length; const f: number[][] = Array.from({ length: m }, () => [-1, -1]); function dfs(pos: number, pre: number, limit: boolean): number { if (pos >= m) { return 1; } if (!limit && f[pos][pre] !== -1) { return f[pos][pre]; } const up = limit ? parseInt(s[pos]) : 1; let ans = 0; for (let i = 0; i <= up; ++i) { if (!(pre === 1 && i === 1)) { ans += dfs(pos + 1, i, limit && i === up); } } if (!limit) { f[pos][pre] = ans; } return ans; } return dfs(0, 0, true); }