Welcome to Subscribe On Youtube
561. Array Partition
Description
Given an integer array nums
of 2n
integers, group these integers into n
pairs (a1, b1), (a2, b2), ..., (an, bn)
such that the sum of min(ai, bi)
for all i
is maximized. Return the maximized sum.
Example 1:
Input: nums = [1,4,3,2] Output: 4 Explanation: All possible pairings (ignoring the ordering of elements) are: 1. (1, 4), (2, 3) -> min(1, 4) + min(2, 3) = 1 + 2 = 3 2. (1, 3), (2, 4) -> min(1, 3) + min(2, 4) = 1 + 2 = 3 3. (1, 2), (3, 4) -> min(1, 2) + min(3, 4) = 1 + 3 = 4 So the maximum possible sum is 4.
Example 2:
Input: nums = [6,2,6,5,1,2] Output: 9 Explanation: The optimal pairing is (2, 1), (2, 5), (6, 6). min(2, 1) + min(2, 5) + min(6, 6) = 1 + 2 + 6 = 9.
Constraints:
1 <= n <= 104
nums.length == 2 * n
-104 <= nums[i] <= 104
Solutions
-
class Solution { public int arrayPairSum(int[] nums) { Arrays.sort(nums); int ans = 0; for (int i = 0; i < nums.length; i += 2) { ans += nums[i]; } return ans; } }
-
class Solution { public: int arrayPairSum(vector<int>& nums) { sort(nums.begin(), nums.end()); int ans = 0; for (int i = 0; i < nums.size(); i += 2) ans += nums[i]; return ans; } };
-
class Solution: def arrayPairSum(self, nums: List[int]) -> int: return sum(sorted(nums)[::2])
-
func arrayPairSum(nums []int) int { sort.Ints(nums) ans := 0 for i := 0; i < len(nums); i += 2 { ans += nums[i] } return ans }
-
/** * @param {number[]} nums * @return {number} */ var arrayPairSum = function (nums) { nums.sort((a, b) => a - b); let ans = 0; for (let i = 0; i < nums.length; i += 2) { ans += nums[i]; } return ans; };
-
impl Solution { pub fn array_pair_sum(mut nums: Vec<i32>) -> i32 { nums.sort(); let n = nums.len(); let mut i = 0; let mut res = 0; while i < n { res += nums[i]; i += 2; } res } }