Welcome to Subscribe On Youtube
537. Complex Number Multiplication
Description
A complex number can be represented as a string on the form "real+imaginaryi"
where:
real
is the real part and is an integer in the range[-100, 100]
.imaginary
is the imaginary part and is an integer in the range[-100, 100]
.i2 == -1
.
Given two complex numbers num1
and num2
as strings, return a string of the complex number that represents their multiplications.
Example 1:
Input: num1 = "1+1i", num2 = "1+1i" Output: "0+2i" Explanation: (1 + i) * (1 + i) = 1 + i2 + 2 * i = 2i, and you need convert it to the form of 0+2i.
Example 2:
Input: num1 = "1+-1i", num2 = "1+-1i" Output: "0+-2i" Explanation: (1 - i) * (1 - i) = 1 + i2 - 2 * i = -2i, and you need convert it to the form of 0+-2i.
Constraints:
num1
andnum2
are valid complex numbers.
Solutions
(a+bi)(c+di) = ac-bd+(ad+cb)i
-
class Solution { public String complexNumberMultiply(String num1, String num2) { String[] c1 = num1.split("\\+|i"); String[] c2 = num2.split("\\+|i"); int a = Integer.parseInt(c1[0]); int b = Integer.parseInt(c1[1]); int c = Integer.parseInt(c2[0]); int d = Integer.parseInt(c2[1]); return String.format("%d+%di", a * c - b * d, a * d + c * b); } }
-
class Solution { public: string complexNumberMultiply(string num1, string num2) { int a, b, c, d; sscanf(num1.c_str(), "%d+%di", &a, &b); sscanf(num2.c_str(), "%d+%di", &c, &d); return string(to_string(a * c - b * d) + "+" + to_string(a * d + c * b) + "i"); } };
-
class Solution: def complexNumberMultiply(self, num1: str, num2: str) -> str: a, b = map(int, num1[:-1].split('+')) c, d = map(int, num2[:-1].split('+')) return f'{a * c - b * d}+{a * d + c * b}i'
-
func complexNumberMultiply(num1, num2 string) string { parse := func(num string) (a, b int) { i := strings.IndexByte(num, '+') a, _ = strconv.Atoi(num[:i]) b, _ = strconv.Atoi(num[i+1 : len(num)-1]) return } a, b := parse(num1) c, d := parse(num2) return fmt.Sprintf("%d+%di", a*c-b*d, a*d+b*c) }
-
function complexNumberMultiply(num1: string, num2: string): string { let arr1 = num1.split('+'), arr2 = num2.split('+'); let r1 = Number(arr1[0]), r2 = Number(arr2[0]); let v1 = Number(arr1[1].substring(0, arr1[1].length - 1)), v2 = Number(arr2[1].substring(0, arr2[1].length - 1)); let ansR = r1 * r2 - v1 * v2; let ansV = r1 * v2 + r2 * v1; return `${ansR}+${ansV}i`; }