Welcome to Subscribe On Youtube

526. Beautiful Arrangement

Description

Suppose you have n integers labeled 1 through n. A permutation of those n integers perm (1-indexed) is considered a beautiful arrangement if for every i (1 <= i <= n), either of the following is true:

  • perm[i] is divisible by i.
  • i is divisible by perm[i].

Given an integer n, return the number of the beautiful arrangements that you can construct.

 

Example 1:

Input: n = 2
Output: 2
Explanation: 
The first beautiful arrangement is [1,2]:
    - perm[1] = 1 is divisible by i = 1
    - perm[2] = 2 is divisible by i = 2
The second beautiful arrangement is [2,1]:
    - perm[1] = 2 is divisible by i = 1
    - i = 2 is divisible by perm[2] = 1

Example 2:

Input: n = 1
Output: 1

 

Constraints:

  • 1 <= n <= 15

Solutions

  • class Solution {
        public int countArrangement(int N) {
            int maxn = 1 << N;
            int[] f = new int[maxn];
            f[0] = 1;
            for (int i = 0; i < maxn; ++i) {
                int s = 1;
                for (int j = 0; j < N; ++j) {
                    s += (i >> j) & 1;
                }
                for (int j = 1; j <= N; ++j) {
                    if (((i >> (j - 1) & 1) == 0) && (s % j == 0 || j % s == 0)) {
                        f[i | (1 << (j - 1))] += f[i];
                    }
                }
            }
            return f[maxn - 1];
        }
    }
    
    
  • class Solution {
    public:
        int n;
        int ans;
        vector<bool> vis;
        unordered_map<int, vector<int>> match;
    
        int countArrangement(int n) {
            this->n = n;
            this->ans = 0;
            vis.resize(n + 1);
            for (int i = 1; i <= n; ++i)
                for (int j = 1; j <= n; ++j)
                    if (i % j == 0 || j % i == 0)
                        match[i].push_back(j);
            dfs(1);
            return ans;
        }
    
        void dfs(int i) {
            if (i == n + 1) {
                ++ans;
                return;
            }
            for (int j : match[i]) {
                if (!vis[j]) {
                    vis[j] = true;
                    dfs(i + 1);
                    vis[j] = false;
                }
            }
        }
    };
    
  • class Solution:
        def countArrangement(self, n: int) -> int:
            def dfs(i):
                nonlocal ans, n
                if i == n + 1:
                    ans += 1
                    return
                for j in match[i]:
                    if not vis[j]:
                        vis[j] = True
                        dfs(i + 1)
                        vis[j] = False
    
            ans = 0
            vis = [False] * (n + 1)
            match = defaultdict(list)
            for i in range(1, n + 1):
                for j in range(1, n + 1):
                    if j % i == 0 or i % j == 0:
                        match[i].append(j)
    
            dfs(1)
            return ans
    
    
  • func countArrangement(n int) int {
    	ans := 0
    	match := make(map[int][]int)
    	for i := 1; i <= n; i++ {
    		for j := 1; j <= n; j++ {
    			if i%j == 0 || j%i == 0 {
    				match[i] = append(match[i], j)
    			}
    		}
    	}
    	vis := make([]bool, n+1)
    
    	var dfs func(i int)
    	dfs = func(i int) {
    		if i == n+1 {
    			ans++
    			return
    		}
    		for _, j := range match[i] {
    			if !vis[j] {
    				vis[j] = true
    				dfs(i + 1)
    				vis[j] = false
    			}
    		}
    	}
    
    	dfs(1)
    	return ans
    }
    
  • function countArrangement(n: number): number {
        const vis = new Array(n + 1).fill(0);
        const match = Array.from({ length: n + 1 }, () => []);
        for (let i = 1; i <= n; i++) {
            for (let j = 1; j <= n; j++) {
                if (i % j === 0 || j % i === 0) {
                    match[i].push(j);
                }
            }
        }
    
        let res = 0;
        const dfs = (i: number, n: number) => {
            if (i === n + 1) {
                res++;
                return;
            }
            for (const j of match[i]) {
                if (!vis[j]) {
                    vis[j] = true;
                    dfs(i + 1, n);
                    vis[j] = false;
                }
            }
        };
        dfs(1, n);
        return res;
    }
    
    
  • impl Solution {
        fn dfs(i: usize, n: usize, mat: &Vec<Vec<usize>>, vis: &mut Vec<bool>, res: &mut i32) {
            if i == n + 1 {
                *res += 1;
                return;
            }
            for &j in mat[i].iter() {
                if !vis[j] {
                    vis[j] = true;
                    Self::dfs(i + 1, n, mat, vis, res);
                    vis[j] = false;
                }
            }
        }
    
        pub fn count_arrangement(n: i32) -> i32 {
            let n = n as usize;
            let mut vis = vec![false; n + 1];
            let mut mat = vec![Vec::new(); n + 1];
            for i in 1..=n {
                for j in 1..=n {
                    if i % j == 0 || j % i == 0 {
                        mat[i].push(j);
                    }
                }
            }
    
            let mut res = 0;
            Self::dfs(1, n, &mat, &mut vis, &mut res);
            res
        }
    }
    
    

All Problems

All Solutions