Welcome to Subscribe On Youtube

Formatted question description: https://leetcode.ca/all/509.html

509. Fibonacci Number (Easy)

The Fibonacci numbers, commonly denoted F(n) form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0 and 1. That is,

F(0) = 0,   F(1) = 1
F(N) = F(N - 1) + F(N - 2), for N > 1.

Given N, calculate F(N).

 

Example 1:

Input: 2
Output: 1
Explanation: F(2) = F(1) + F(0) = 1 + 0 = 1.

Example 2:

Input: 3
Output: 2
Explanation: F(3) = F(2) + F(1) = 1 + 1 = 2.

Example 3:

Input: 4
Output: 3
Explanation: F(4) = F(3) + F(2) = 2 + 1 = 3.

 

Note:

0 ≤ N ≤ 30.

Related Topics:
Array

Similar Questions:

Solution 1.

// OJ: https://leetcode.com/problems/fibonacci-number/
// Time: O(N)
// Space: O(1)
class Solution {
public:
    int fib(int N) {
        if (!N) return 0;
        if (N == 1) return 1;
        int prev = 0, cur = 1;
        while (--N > 0) {
            int tmp = prev + cur;
            prev = cur;
            cur = tmp;
        }
        return cur;
    }
};

Java

  • class Solution {
        public int fib(int N) {
            if (N <= 1)
                return N;
            int prev2 = 0, prev1 = 1;
            int num = 1;
            int index = 2;
            while (index <= N) {
                num = prev2 + prev1;
                prev2 = prev1;
                prev1 = num;
                index++;
            }
            return num;
        }
    }
    
  • // OJ: https://leetcode.com/problems/fibonacci-number/
    // Time: O(N)
    // Space: O(1)
    class Solution {
    public:
        int fib(int n) {
            if (n <= 1) return n;
            int a = 0, b = 1;
            while (--n > 0) {
                a += b;
                swap(a, b);
            }
            return b;
        }
    };
    
  • class Solution:
        def fib(self, n: int) -> int:
            a, b = 0, 1
            for _ in range(n):
                a, b = b, a + b
            return a
    
    
    

All Problems

All Solutions