Welcome to Subscribe On Youtube
Formatted question description: https://leetcode.ca/all/509.html
509. Fibonacci Number (Easy)
The Fibonacci numbers, commonly denoted F(n)
form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0
and 1
. That is,
F(0) = 0, F(1) = 1 F(N) = F(N - 1) + F(N - 2), for N > 1.
Given N
, calculate F(N)
.
Example 1:
Input: 2 Output: 1 Explanation: F(2) = F(1) + F(0) = 1 + 0 = 1.
Example 2:
Input: 3 Output: 2 Explanation: F(3) = F(2) + F(1) = 1 + 1 = 2.
Example 3:
Input: 4 Output: 3 Explanation: F(4) = F(3) + F(2) = 2 + 1 = 3.
Note:
0 ≤ N
≤ 30.
Related Topics:
Array
Similar Questions:
- Climbing Stairs (Easy)
- Split Array into Fibonacci Sequence (Medium)
- Length of Longest Fibonacci Subsequence (Medium)
Solution 1.
-
class Solution { public int fib(int N) { if (N <= 1) return N; int prev2 = 0, prev1 = 1; int num = 1; int index = 2; while (index <= N) { num = prev2 + prev1; prev2 = prev1; prev1 = num; index++; } return num; } } ############ class Solution { public int fib(int n) { int a = 0, b = 1; while (n-- > 0) { int c = a + b; a = b; b = c; } return a; } }
-
// OJ: https://leetcode.com/problems/fibonacci-number/ // Time: O(N) // Space: O(1) class Solution { public: int fib(int n) { if (n <= 1) return n; int a = 0, b = 1; while (--n > 0) { a += b; swap(a, b); } return b; } };
-
class Solution: def fib(self, n: int) -> int: a, b = 0, 1 for _ in range(n): a, b = b, a + b return a
-
func fib(n int) int { a, b := 0, 1 for i := 0; i < n; i++ { a, b = b, a+b } return a }
-
function fib(n: number): number { let a = 0; let b = 1; for (let i = 0; i < n; i++) { [a, b] = [a, a + b]; } return a; }
-
/** * @param {number} n * @return {number} */ var fib = function (n) { let a = 0; let b = 1; while (n--) { const c = a + b; a = b; b = c; } return a; };
-
class Solution { /** * @param Integer $n * @return Integer */ function fib($n) { if ($n == 0 || $n == 1) { return $n; } $dp = [0, 1]; for ($i = 2; $i <= $n; $i++) { $dp[$i] = $dp[$i - 2] + $dp[$i - 1]; } return $dp[$n]; } }
-
impl Solution { pub fn fib(n: i32) -> i32 { let mut a = 0; let mut b = 1; for _ in 0..n { let t = b; b = a + b; a = t } a } }