##### Welcome to Subscribe On Youtube

Formatted question description: https://leetcode.ca/all/483.html

# 483. Smallest Good Base (Hard)

For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1.

Now given a string representing n, you should return the smallest good base of n in string format.

Example 1:

Input: "13"
Output: "3"
Explanation: 13 base 3 is 111.


Example 2:

Input: "4681"
Output: "8"
Explanation: 4681 base 8 is 11111.


Example 3:

Input: "1000000000000000000"
Output: "999999999999999999"
Explanation: 1000000000000000000 base 999999999999999999 is 11.


Note:

1. The range of n is [3, 10^18].
2. The string representing n is always valid and will not have leading zeros.

Related Topics:
Math, Binary Search

## Solution 1.

n - 1 is the greatest good base since n base(n-1) = 11.

Assume x is the next smaller good base, then n base(x) = 111 or x^2 + x + 1 = n. x = sqrt(n - x - 1) < sqrt(n).

Let k = sqrt(n) and assume val base(k) = 111. val should be greater than n.

Then we keep decrement k to approach x, and the val which satisfies val base(k) = 111 approaches n as well.

We keep decrementing k until val <= num.

If val == n, we find a good base k; otherwise (val < n), k is not a good base.

We continue to look for the next smaller good base y, then n base(y) = 1111 or y^3 + y^2 + y + 1 = n. y = cbrt(n - y^2 - y - 1) < cbrt(n).

So we can do similar approach as above, let k = cbrt(n) and try to approach y.

As we keep looking for the next good base z, we start from k = pow(n, 1 / (cnt - 1)) where cnt is the number of ones in n base(z).

We stop the process once k < 2. The last good base we found is the answer.

// OJ: https://leetcode.com/problems/smallest-good-base/
// Time: O(logN)
// Space: O(1)
typedef unsigned long long ULL;
class Solution {
private:
ULL getValue(ULL base, int cnt) {
ULL ans = 1, p = 1;
while (--cnt) ans += (p *= base);
return ans;
}
public:
string smallestGoodBase(string n) {
ULL num = stoull(n), ans = num - 1, cnt = 3, k, val;
while (true) {
k = pow(num, 1 / (double)(cnt - 1));
if (k < 2) break;
do {
val = getValue(k, cnt);
if (val == num) ans = k;
--k;
} while (val > num);
++cnt;
}
}
};


## Solution 2.

// OJ: https://leetcode.com/problems/smallest-good-base/
// Time: O(logN)
// Space: O(1)
// Ref: https://leetcode.com/problems/smallest-good-base/discuss/96590/3ms-AC-C++-long-long-int-+-binary-search/101166
class Solution {
typedef unsigned long long ull;
public:
string smallestGoodBase(string n) {
ull num = (ull)stoll(n);
int maxlen = log(num) / log(2) + 1;
for(int k = maxlen; k >= 3; --k){
ull b = pow(num, 1.0 / (k - 1)), sum = 1, cur = 1;
for (int i = 1; i < k; ++i) sum += (cur *= b);
}
}
};

• class Solution {
public String smallestGoodBase(String n) {
long num = Long.parseLong(n);
long max = (long) (Math.log(num) / Math.log(2));
for (long i = max; i > 1; i--) {
long base = (long) Math.pow(num, 1.0 / i);
long sum = 0;
for (long j = 0; j <= i; j++)
sum = sum * base + 1;
if (sum == num)
return String.valueOf(base);
}
return String.valueOf(num - 1);
}
}

############

class Solution {
public String smallestGoodBase(String n) {
long num = Long.parseLong(n);
for (int len = 63; len >= 2; --len) {
}
}
return String.valueOf(num - 1);
}

private long getRadix(int len, long num) {
long l = 2, r = num - 1;
while (l < r) {
long mid = l + r >>> 1;
if (calc(mid, len) >= num)
r = mid;
else
l = mid + 1;
}
return calc(r, len) == num ? r : -1;
}

private long calc(long radix, int len) {
long p = 1;
long sum = 0;
for (int i = 0; i < len; ++i) {
if (Long.MAX_VALUE - sum < p) {
return Long.MAX_VALUE;
}
sum += p;
if (Long.MAX_VALUE / p < radix) {
p = Long.MAX_VALUE;
} else {
}
}
return sum;
}
}


• // OJ: https://leetcode.com/problems/smallest-good-base/
// Time: O(logN)
// Space: O(1)
typedef unsigned long long ULL;
class Solution {
private:
ULL getValue(ULL base, int cnt) {
ULL ans = 1, p = 1;
while (--cnt) ans += (p *= base);
return ans;
}
public:
string smallestGoodBase(string n) {
ULL num = stoull(n), ans = num - 1, cnt = 3, k, val;
while (true) {
k = pow(num, 1 / (double)(cnt - 1));
if (k < 2) break;
do {
val = getValue(k, cnt);
if (val == num) ans = k;
--k;
} while (val > num);
++cnt;
}
}
};

• class Solution:
def smallestGoodBase(self, n: str) -> str:
def cal(k, m):
p = s = 1
for i in range(m):
p *= k
s += p
return s

num = int(n)
for m in range(63, 1, -1):
l, r = 2, num - 1
while l < r:
mid = (l + r) >> 1
if cal(mid, m) >= num:
r = mid
else:
l = mid + 1
if cal(l, m) == num:
return str(l)
return str(num - 1)

############

import math

class Solution(object):
def smallestGoodBase(self, n):
"""
:type n: str
:rtype: str
"""
n = int(n)
max_m = int(math.log(n, 2))  # Refer [7]
for m in range(max_m, 1, -1):
k = int(n ** m ** -1)
if (k ** (m + 1) - 1) / (k - 1) == n:
return str(k)
return str(n - 1)