Welcome to Subscribe On Youtube
483. Smallest Good Base
Description
Given an integer n
represented as a string, return the smallest good base of n
.
We call k >= 2
a good base of n
, if all digits of n
base k
are 1
's.
Example 1:
Input: n = "13" Output: "3" Explanation: 13 base 3 is 111.
Example 2:
Input: n = "4681" Output: "8" Explanation: 4681 base 8 is 11111.
Example 3:
Input: n = "1000000000000000000" Output: "999999999999999999" Explanation: 1000000000000000000 base 999999999999999999 is 11.
Constraints:
n
is an integer in the range[3, 1018]
.n
does not contain any leading zeros.
Solutions
-
class Solution { public String smallestGoodBase(String n) { long num = Long.parseLong(n); for (int len = 63; len >= 2; --len) { long radix = getRadix(len, num); if (radix != -1) { return String.valueOf(radix); } } return String.valueOf(num - 1); } private long getRadix(int len, long num) { long l = 2, r = num - 1; while (l < r) { long mid = l + r >>> 1; if (calc(mid, len) >= num) r = mid; else l = mid + 1; } return calc(r, len) == num ? r : -1; } private long calc(long radix, int len) { long p = 1; long sum = 0; for (int i = 0; i < len; ++i) { if (Long.MAX_VALUE - sum < p) { return Long.MAX_VALUE; } sum += p; if (Long.MAX_VALUE / p < radix) { p = Long.MAX_VALUE; } else { p *= radix; } } return sum; } }
-
class Solution { public: string smallestGoodBase(string n) { long v = stol(n); int mx = floor(log(v) / log(2)); for (int m = mx; m > 1; --m) { int k = pow(v, 1.0 / m); long mul = 1, s = 1; for (int i = 0; i < m; ++i) { mul *= k; s += mul; } if (s == v) { return to_string(k); } } return to_string(v - 1); } };
-
class Solution: def smallestGoodBase(self, n: str) -> str: def cal(k, m): p = s = 1 for i in range(m): p *= k s += p return s num = int(n) for m in range(63, 1, -1): l, r = 2, num - 1 while l < r: mid = (l + r) >> 1 if cal(mid, m) >= num: r = mid else: l = mid + 1 if cal(l, m) == num: return str(l) return str(num - 1)