Welcome to Subscribe On Youtube

481. Magical String

Description

A magical string s consists of only '1' and '2' and obeys the following rules:

  • The string s is magical because concatenating the number of contiguous occurrences of characters '1' and '2' generates the string s itself.

The first few elements of s is s = "1221121221221121122……". If we group the consecutive 1's and 2's in s, it will be "1 22 11 2 1 22 1 22 11 2 11 22 ......" and the occurrences of 1's or 2's in each group are "1 2 2 1 1 2 1 2 2 1 2 2 ......". You can see that the occurrence sequence is s itself.

Given an integer n, return the number of 1's in the first n number in the magical string s.

 

Example 1:

Input: n = 6
Output: 3
Explanation: The first 6 elements of magical string s is "122112" and it contains three 1's, so return 3.

Example 2:

Input: n = 1
Output: 1

 

Constraints:

  • 1 <= n <= 105

Solutions

  • class Solution {
        public int magicalString(int n) {
            List<Integer> s = new ArrayList<>(Arrays.asList(1, 2, 2));
            for (int i = 2; s.size() < n; ++i) {
                int pre = s.get(s.size() - 1);
                int cur = 3 - pre;
                for (int j = 0; j < s.get(i); ++j) {
                    s.add(cur);
                }
            }
            int ans = 0;
            for (int i = 0; i < n; ++i) {
                if (s.get(i) == 1) {
                    ++ans;
                }
            }
            return ans;
        }
    }
    
  • class Solution {
    public:
        int magicalString(int n) {
            vector<int> s = {1, 2, 2};
            for (int i = 2; s.size() < n; ++i) {
                int pre = s.back();
                int cur = 3 - pre;
                for (int j = 0; j < s[i]; ++j) {
                    s.emplace_back(cur);
                }
            }
            return count(s.begin(), s.begin() + n, 1);
        }
    };
    
  • class Solution:
        def magicalString(self, n: int) -> int:
            s = [1, 2, 2]
            i = 2
            while len(s) < n:
                pre = s[-1]
                cur = 3 - pre
                s += [cur] * s[i]
                i += 1
            return s[:n].count(1)
    
    
  • func magicalString(n int) (ans int) {
    	s := []int{1, 2, 2}
    	for i := 2; len(s) < n; i++ {
    		pre := s[len(s)-1]
    		cur := 3 - pre
    		for j := 0; j < s[i]; j++ {
    			s = append(s, cur)
    		}
    	}
    	for _, c := range s[:n] {
    		if c == 1 {
    			ans++
    		}
    	}
    	return
    }
    
  • function magicalString(n: number): number {
        const cs = [...'1221121'];
        let i = 5;
        while (cs.length < n) {
            const c = cs[cs.length - 1];
            cs.push(c === '1' ? '2' : '1');
            if (cs[i] !== '1') {
                cs.push(c === '1' ? '2' : '1');
            }
            i++;
        }
        return cs.slice(0, n).reduce((r, c) => r + (c === '1' ? 1 : 0), 0);
    }
    
    
  • impl Solution {
        pub fn magical_string(n: i32) -> i32 {
            let n = n as usize;
            let mut s = String::from("1221121");
            let mut i = 5;
            while s.len() < n {
                let c = s.as_bytes()[s.len() - 1];
                s.push(if c == b'1' { '2' } else { '1' });
                if s.as_bytes()[i] != b'1' {
                    s.push(if c == b'1' { '2' } else { '1' });
                }
                i += 1;
            }
            s
                .as_bytes()
                [0..n].iter()
                .filter(|&v| v == &b'1')
                .count() as i32
        }
    }
    
    

All Problems

All Solutions