Welcome to Subscribe On Youtube
474. Ones and Zeroes
Description
You are given an array of binary strings strs
and two integers m
and n
.
Return the size of the largest subset of strs
such that there are at most m
0
's and n
1
's in the subset.
A set x
is a subset of a set y
if all elements of x
are also elements of y
.
Example 1:
Input: strs = ["10","0001","111001","1","0"], m = 5, n = 3 Output: 4 Explanation: The largest subset with at most 5 0's and 3 1's is {"10", "0001", "1", "0"}, so the answer is 4. Other valid but smaller subsets include {"0001", "1"} and {"10", "1", "0"}. {"111001"} is an invalid subset because it contains 4 1's, greater than the maximum of 3.
Example 2:
Input: strs = ["10","0","1"], m = 1, n = 1 Output: 2 Explanation: The largest subset is {"0", "1"}, so the answer is 2.
Constraints:
1 <= strs.length <= 600
1 <= strs[i].length <= 100
strs[i]
consists only of digits'0'
and'1'
.1 <= m, n <= 100
Solutions
-
class Solution { public int findMaxForm(String[] strs, int m, int n) { int[][] f = new int[m + 1][n + 1]; for (String s : strs) { int[] cnt = count(s); for (int i = m; i >= cnt[0]; --i) { for (int j = n; j >= cnt[1]; --j) { f[i][j] = Math.max(f[i][j], f[i - cnt[0]][j - cnt[1]] + 1); } } } return f[m][n]; } private int[] count(String s) { int[] cnt = new int[2]; for (int i = 0; i < s.length(); ++i) { ++cnt[s.charAt(i) - '0']; } return cnt; } }
-
class Solution { public: int findMaxForm(vector<string>& strs, int m, int n) { int f[m + 1][n + 1]; memset(f, 0, sizeof(f)); for (auto& s : strs) { auto [a, b] = count(s); for (int i = m; i >= a; --i) { for (int j = n; j >= b; --j) { f[i][j] = max(f[i][j], f[i - a][j - b] + 1); } } } return f[m][n]; } pair<int, int> count(string& s) { int a = count_if(s.begin(), s.end(), [](char c) { return c == '0'; }); return {a, s.size() - a}; } };
-
class Solution: def findMaxForm(self, strs: List[str], m: int, n: int) -> int: f = [[0] * (n + 1) for _ in range(m + 1)] for s in strs: a, b = s.count("0"), s.count("1") for i in range(m, a - 1, -1): for j in range(n, b - 1, -1): f[i][j] = max(f[i][j], f[i - a][j - b] + 1) return f[m][n]
-
func findMaxForm(strs []string, m int, n int) int { f := make([][]int, m+1) for i := range f { f[i] = make([]int, n+1) } for _, s := range strs { a, b := count(s) for j := m; j >= a; j-- { for k := n; k >= b; k-- { f[j][k] = max(f[j][k], f[j-a][k-b]+1) } } } return f[m][n] } func count(s string) (int, int) { a := strings.Count(s, "0") return a, len(s) - a }
-
function findMaxForm(strs: string[], m: number, n: number): number { const f = Array.from({ length: m + 1 }, () => Array.from({ length: n + 1 }, () => 0)); const count = (s: string): [number, number] => { let a = 0; for (const c of s) { a += c === '0' ? 1 : 0; } return [a, s.length - a]; }; for (const s of strs) { const [a, b] = count(s); for (let i = m; i >= a; --i) { for (let j = n; j >= b; --j) { f[i][j] = Math.max(f[i][j], f[i - a][j - b] + 1); } } } return f[m][n]; }