Welcome to Subscribe On Youtube

472. Concatenated Words

Description

Given an array of strings words (without duplicates), return all the concatenated words in the given list of words.

A concatenated word is defined as a string that is comprised entirely of at least two shorter words (not necessarily distinct) in the given array.

 

Example 1:

Input: words = ["cat","cats","catsdogcats","dog","dogcatsdog","hippopotamuses","rat","ratcatdogcat"]
Output: ["catsdogcats","dogcatsdog","ratcatdogcat"]
Explanation: "catsdogcats" can be concatenated by "cats", "dog" and "cats"; 
"dogcatsdog" can be concatenated by "dog", "cats" and "dog"; 
"ratcatdogcat" can be concatenated by "rat", "cat", "dog" and "cat".

Example 2:

Input: words = ["cat","dog","catdog"]
Output: ["catdog"]

 

Constraints:

  • 1 <= words.length <= 104
  • 1 <= words[i].length <= 30
  • words[i] consists of only lowercase English letters.
  • All the strings of words are unique.
  • 1 <= sum(words[i].length) <= 105

Solutions

  • class Trie {
        Trie[] children = new Trie[26];
        boolean isEnd;
    
        void insert(String w) {
            Trie node = this;
            for (char c : w.toCharArray()) {
                c -= 'a';
                if (node.children[c] == null) {
                    node.children[c] = new Trie();
                }
                node = node.children[c];
            }
            node.isEnd = true;
        }
    }
    
    class Solution {
        private Trie trie = new Trie();
    
        public List<String> findAllConcatenatedWordsInADict(String[] words) {
            Arrays.sort(words, (a, b) -> a.length() - b.length());
            List<String> ans = new ArrayList<>();
            for (String w : words) {
                if (dfs(w)) {
                    ans.add(w);
                } else {
                    trie.insert(w);
                }
            }
            return ans;
        }
    
        private boolean dfs(String w) {
            if ("".equals(w)) {
                return true;
            }
            Trie node = trie;
            for (int i = 0; i < w.length(); ++i) {
                int idx = w.charAt(i) - 'a';
                if (node.children[idx] == null) {
                    return false;
                }
                node = node.children[idx];
                if (node.isEnd && dfs(w.substring(i + 1))) {
                    return true;
                }
            }
            return false;
        }
    }
    
  • class Trie {
    public:
        vector<Trie*> children;
        bool isEnd;
        Trie()
            : children(26)
            , isEnd(false) {}
    
        void insert(string w) {
            Trie* node = this;
            for (char c : w) {
                c -= 'a';
                if (!node->children[c]) node->children[c] = new Trie();
                node = node->children[c];
            }
            node->isEnd = true;
        }
    };
    
    class Solution {
    public:
        Trie* trie = new Trie();
    
        vector<string> findAllConcatenatedWordsInADict(vector<string>& words) {
            sort(words.begin(), words.end(), [&](const string& a, const string& b) {
                return a.size() < b.size();
            });
            vector<string> ans;
            for (auto& w : words) {
                if (dfs(w))
                    ans.push_back(w);
                else
                    trie->insert(w);
            }
            return ans;
        }
    
        bool dfs(string w) {
            if (w == "") return true;
            Trie* node = trie;
            for (int i = 0; i < w.size(); ++i) {
                int idx = w[i] - 'a';
                if (!node->children[idx]) return false;
                node = node->children[idx];
                if (node->isEnd && dfs(w.substr(i + 1))) return true;
            }
            return false;
        }
    };
    
  • class Trie:
        def __init__(self):
            self.children = [None] * 26
            self.is_end = False
    
        def insert(self, w):
            node = self
            for c in w:
                idx = ord(c) - ord('a')
                if node.children[idx] is None:
                    node.children[idx] = Trie()
                node = node.children[idx]
            node.is_end = True
    
    
    class Solution:
        def findAllConcatenatedWordsInADict(self, words: List[str]) -> List[str]:
            def dfs(w):
                if not w:
                    return True
                node = trie
                for i, c in enumerate(w):
                    idx = ord(c) - ord('a')
                    if node.children[idx] is None:
                        return False
                    node = node.children[idx]
                    if node.is_end and dfs(w[i + 1 :]):
                        return True
                return False
    
            trie = Trie()
            ans = []
            words.sort(key=lambda x: len(x))
            for w in words:
                if dfs(w):
                    ans.append(w)
                else:
                    trie.insert(w)
            return ans
    
    
  • type Trie struct {
    	children [26]*Trie
    	isEnd    bool
    }
    
    func newTrie() *Trie {
    	return &Trie{}
    }
    func (this *Trie) insert(word string) {
    	node := this
    	for _, c := range word {
    		c -= 'a'
    		if node.children[c] == nil {
    			node.children[c] = newTrie()
    		}
    		node = node.children[c]
    	}
    	node.isEnd = true
    }
    
    func findAllConcatenatedWordsInADict(words []string) (ans []string) {
    	sort.Slice(words, func(i, j int) bool { return len(words[i]) < len(words[j]) })
    	trie := newTrie()
    	var dfs func(string) bool
    	dfs = func(w string) bool {
    		if w == "" {
    			return true
    		}
    		node := trie
    		for i, c := range w {
    			c -= 'a'
    			if node.children[c] == nil {
    				return false
    			}
    			node = node.children[c]
    			if node.isEnd && dfs(w[i+1:]) {
    				return true
    			}
    		}
    		return false
    	}
    	for _, w := range words {
    		if dfs(w) {
    			ans = append(ans, w)
    		} else {
    			trie.insert(w)
    		}
    	}
    	return
    }
    

All Problems

All Solutions