Welcome to Subscribe On Youtube
Formatted question description: https://leetcode.ca/all/460.html
460. LFU Cache
Level
Hard
Description
Design and implement a data structure for Least Frequently Used (LFU) cache. It should support the following operations: get
and put
.
get(key)
- Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.put(key, value)
- Set or insert the value if the key is not already present. When the cache reaches its capacity, it should invalidate the least frequently used item before inserting a new item. For the purpose of this problem, when there is a tie (i.e., two or more keys that have the same frequency), the least recently used key would be evicted.
Note that the number of times an item is used is the number of calls to the get
and put
functions for that item since it was inserted. This number is set to zero when the item is removed.
Follow up:
Could you do both operations in O(1) time complexity?
Example:
LFUCache cache = new LFUCache( 2 /* capacity */ );
cache.put(1, 1);
cache.put(2, 2);
cache.get(1); // returns 1
cache.put(3, 3); // evicts key 2
cache.get(2); // returns -1 (not found)
cache.get(3); // returns 3.
cache.put(4, 4); // evicts key 1.
cache.get(1); // returns -1 (not found)
cache.get(3); // returns 3
cache.get(4); // returns 4
Solution
Create two classes Node
and DoublyLinkedList
. Each object of Node
has a key, a value, a frequency, the previous node and the next node. Each object of DoublyLinkedList
has a size, a head and a tail.
In class LFUCache
, maintain two maps cache
and frequencyMap
, which stores each key and the corresponding node, and stores each frequency and the corresponding doubly linked lists, respectively. Also maintain size
, capacity
and minCapacity
.
For the constructor, initialize the two maps and the capacity.
For method get
, get the node from cache
. If the node exists, update the node’s frequency and return the node’s value. Otherwise, return -1.
For method put
, check whether the node of the key already exists. If the node already exists, update the node’s value and update the node’s frequency. Otherwise, if size
already reaches compacity
, obtain the minimum frequency list using minFrequency
and remove the last node, and decreasesize
by 1. Then create a new node using key
and value
, update the maps, increase size
by 1 and set minFrequency = 1
.
-
public class LFU_Cache { public class LFUCache { // Save the key, value HashMap<Integer, Integer> vals; // Save the key to the value of the number of visits HashMap<Integer, Integer> counts; // 频率和一个里面所有key都是当前频率的list之间的映射 HashMap<Integer, LinkedHashSet<Integer>> lists; int capacity; // Initialize the frequency of data occurrences int min = -1; public LFUCache(int cap) { capacity = cap; vals = new HashMap<>(); counts = new HashMap<>(); lists = new HashMap<>(); } public int get(int key) { if (!vals.containsKey(key)) return -1; int count = counts.get(key); counts.put(key, count + 1); lists.get(count).remove(key); // Determine whether min should add 1 if (count == min && lists.get(count).size() == 0) { min++; } if (!lists.containsKey(count + 1)) { lists.put(count + 1, new LinkedHashSet<>()); } lists.get(count + 1).add(key); return vals.get(key); } public void put(int key, int value) { if (capacity <= 0) return; if (vals.containsKey(key)) { vals.put(key, value); get(key); return; } if (vals.size() >= capacity) { int minFreKey = lists.get(min).iterator().next(); lists.get(min).remove(minFreKey); vals.remove(minFreKey); counts.remove(minFreKey); } vals.put(key, value); counts.put(key, 1); min = 1; if (!lists.containsKey(1)) { lists.put(1, new LinkedHashSet<>()); } lists.get(1).add(key); } } } ############ class LFUCache { private final Map<Integer, Node> map; private final Map<Integer, DoublyLinkedList> freqMap; private final int capacity; private int minFreq; public LFUCache(int capacity) { this.capacity = capacity; map = new HashMap<>(capacity, 1); freqMap = new HashMap<>(); } public int get(int key) { if (capacity == 0) { return -1; } if (!map.containsKey(key)) { return -1; } Node node = map.get(key); incrFreq(node); return node.value; } public void put(int key, int value) { if (capacity == 0) { return; } if (map.containsKey(key)) { Node node = map.get(key); node.value = value; incrFreq(node); return; } if (map.size() == capacity) { DoublyLinkedList list = freqMap.get(minFreq); map.remove(list.removeLast().key); } Node node = new Node(key, value); addNode(node); map.put(key, node); minFreq = 1; } private void incrFreq(Node node) { int freq = node.freq; DoublyLinkedList list = freqMap.get(freq); list.remove(node); if (list.isEmpty()) { freqMap.remove(freq); if (freq == minFreq) { minFreq++; } } node.freq++; addNode(node); } private void addNode(Node node) { int freq = node.freq; DoublyLinkedList list = freqMap.getOrDefault(freq, new DoublyLinkedList()); list.addFirst(node); freqMap.put(freq, list); } private static class Node { int key; int value; int freq; Node prev; Node next; Node(int key, int value) { this.key = key; this.value = value; this.freq = 1; } } private static class DoublyLinkedList { private final Node head; private final Node tail; public DoublyLinkedList() { head = new Node(-1, -1); tail = new Node(-1, -1); head.next = tail; tail.prev = head; } public void addFirst(Node node) { node.prev = head; node.next = head.next; head.next.prev = node; head.next = node; } public Node remove(Node node) { node.next.prev = node.prev; node.prev.next = node.next; node.next = null; node.prev = null; return node; } public Node removeLast() { return remove(tail.prev); } public boolean isEmpty() { return head.next == tail; } } }
-
from collections import defaultdict class LFUCache: def __init__(self, capacity: int): self.capacity = capacity self.key_to_value = {} self.key_to_freq = defaultdict(int) self.freq_to_keys = defaultdict(OrderedDict) self.min_freq = 0 def get(self, key: int) -> int: if key not in self.key_to_value: return -1 # Update the frequency self._update_frequency(key) return self.key_to_value[key] def put(self, key: int, value: int) -> None: if self.capacity == 0: return if key in self.key_to_value: # Update the value and frequency self.key_to_value[key] = value self._update_frequency(key) else: if len(self.key_to_value) >= self.capacity: # Evict the least frequently used key self._evict() # Add the new key-value pair self.key_to_value[key] = value self.key_to_freq[key] = 1 self.freq_to_keys[1][key] = None self.min_freq = 1 def _update_frequency(self, key: int) -> None: freq = self.key_to_freq[key] del self.freq_to_keys[freq][key] if not self.freq_to_keys[freq]: # If there are no keys with the previous frequency, update min_freq if self.min_freq == freq: self.min_freq += 1 del self.freq_to_keys[freq] freq += 1 self.key_to_freq[key] = freq self.freq_to_keys[freq][key] = None def _evict(self) -> None: keys = self.freq_to_keys[self.min_freq] evict_key, _ = keys.popitem(last=False) del self.key_to_value[evict_key] del self.key_to_freq[evict_key] # Your LFUCache object will be instantiated and called as such: # obj = LFUCache(capacity) # param_1 = obj.get(key) # obj.put(key,value) ########## class Node: def __init__(self, key: int, value: int) -> None: self.key = key self.value = value self.freq = 1 self.prev = None self.next = None class DoublyLinkedList: def __init__(self) -> None: self.head = Node(-1, -1) self.tail = Node(-1, -1) self.head.next = self.tail self.tail.prev = self.head def add_first(self, node: Node) -> None: node.prev = self.head node.next = self.head.next self.head.next.prev = node self.head.next = node def remove(self, node: Node) -> Node: node.next.prev = node.prev node.prev.next = node.next node.next, node.prev = None, None return node def remove_last(self) -> Node: return self.remove(self.tail.prev) def is_empty(self) -> bool: return self.head.next == self.tail class LFUCache: def __init__(self, capacity: int): self.capacity = capacity self.min_freq = 0 self.map = defaultdict(Node) self.freq_map = defaultdict(DoublyLinkedList) def get(self, key: int) -> int: if self.capacity == 0 or key not in self.map: return -1 node = self.map[key] self.incr_freq(node) return node.value def put(self, key: int, value: int) -> None: if self.capacity == 0: return if key in self.map: node = self.map[key] node.value = value self.incr_freq(node) return if len(self.map) == self.capacity: ls = self.freq_map[self.min_freq] node = ls.remove_last() self.map.pop(node.key) node = Node(key, value) self.add_node(node) self.map[key] = node self.min_freq = 1 def incr_freq(self, node: Node) -> None: freq = node.freq ls = self.freq_map[freq] ls.remove(node) if ls.is_empty(): self.freq_map.pop(freq) if freq == self.min_freq: self.min_freq += 1 node.freq += 1 self.add_node(node) def add_node(self, node: Node) -> None: freq = node.freq ls = self.freq_map[freq] ls.add_first(node) self.freq_map[freq] = ls # Your LFUCache object will be instantiated and called as such: # obj = LFUCache(capacity) # param_1 = obj.get(key) # obj.put(key,value)
-
type LFUCache struct { cache map[int]*node freqMap map[int]*list minFreq int capacity int } func Constructor(capacity int) LFUCache { return LFUCache{ cache: make(map[int]*node), freqMap: make(map[int]*list), capacity: capacity, } } func (this *LFUCache) Get(key int) int { if this.capacity == 0 { return -1 } n, ok := this.cache[key] if !ok { return -1 } this.incrFreq(n) return n.val } func (this *LFUCache) Put(key int, value int) { if this.capacity == 0 { return } n, ok := this.cache[key] if ok { n.val = value this.incrFreq(n) return } if len(this.cache) == this.capacity { l := this.freqMap[this.minFreq] delete(this.cache, l.removeBack().key) } n = &node{key: key, val: value, freq: 1} this.addNode(n) this.cache[key] = n this.minFreq = 1 } func (this *LFUCache) incrFreq(n *node) { l := this.freqMap[n.freq] l.remove(n) if l.empty() { delete(this.freqMap, n.freq) if n.freq == this.minFreq { this.minFreq++ } } n.freq++ this.addNode(n) } func (this *LFUCache) addNode(n *node) { l, ok := this.freqMap[n.freq] if !ok { l = newList() this.freqMap[n.freq] = l } l.pushFront(n) } type node struct { key int val int freq int prev *node next *node } type list struct { head *node tail *node } func newList() *list { head := new(node) tail := new(node) head.next = tail tail.prev = head return &list{ head: head, tail: tail, } } func (l *list) pushFront(n *node) { n.prev = l.head n.next = l.head.next l.head.next.prev = n l.head.next = n } func (l *list) remove(n *node) { n.prev.next = n.next n.next.prev = n.prev n.next = nil n.prev = nil } func (l *list) removeBack() *node { n := l.tail.prev l.remove(n) return n } func (l *list) empty() bool { return l.head.next == l.tail }
-
use std::cell::RefCell; use std::collections::HashMap; use std::rc::Rc; struct Node { key: i32, value: i32, freq: i32, prev: Option<Rc<RefCell<Node>>>, next: Option<Rc<RefCell<Node>>>, } impl Node { fn new(key: i32, value: i32) -> Self { Self { key, value, freq: 1, prev: None, next: None, } } } struct LinkedList { head: Option<Rc<RefCell<Node>>>, tail: Option<Rc<RefCell<Node>>>, } impl LinkedList { fn new() -> Self { Self { head: None, tail: None, } } fn push_front(&mut self, node: &Rc<RefCell<Node>>) { match self.head.take() { Some(head) => { head.borrow_mut().prev = Some(Rc::clone(node)); node.borrow_mut().prev = None; node.borrow_mut().next = Some(head); self.head = Some(Rc::clone(node)); } None => { node.borrow_mut().prev = None; node.borrow_mut().next = None; self.head = Some(Rc::clone(node)); self.tail = Some(Rc::clone(node)); } }; } fn remove(&mut self, node: &Rc<RefCell<Node>>) { match (node.borrow().prev.as_ref(), node.borrow().next.as_ref()) { (None, None) => { self.head = None; self.tail = None; } (None, Some(next)) => { self.head = Some(Rc::clone(next)); next.borrow_mut().prev = None; } (Some(prev), None) => { self.tail = Some(Rc::clone(prev)); prev.borrow_mut().next = None; } (Some(prev), Some(next)) => { next.borrow_mut().prev = Some(Rc::clone(prev)); prev.borrow_mut().next = Some(Rc::clone(next)); } }; } fn pop_back(&mut self) -> Option<Rc<RefCell<Node>>> { match self.tail.take() { Some(tail) => { self.remove(&tail); Some(tail) } None => None, } } fn is_empty(&self) -> bool { self.head.is_none() } } struct LFUCache { cache: HashMap<i32, Rc<RefCell<Node>>>, freq_map: HashMap<i32, LinkedList>, min_freq: i32, capacity: usize, } /** * `&self` means the method takes an immutable reference. * If you need a mutable reference, change it to `&mut self` instead. */ impl LFUCache { fn new(capacity: i32) -> Self { Self { cache: HashMap::new(), freq_map: HashMap::new(), min_freq: 0, capacity: capacity as usize, } } fn get(&mut self, key: i32) -> i32 { if self.capacity == 0 { return -1; } match self.cache.get(&key) { Some(node) => { let node = Rc::clone(node); self.incr_freq(&node); let value = node.borrow().value; value } None => -1, } } fn put(&mut self, key: i32, value: i32) { if self.capacity == 0 { return; } match self.cache.get(&key) { Some(node) => { let node = Rc::clone(node); node.borrow_mut().value = value; self.incr_freq(&node); } None => { if self.cache.len() == self.capacity { let list = self.freq_map.get_mut(&self.min_freq).unwrap(); self.cache.remove(&list.pop_back().unwrap().borrow().key); } let node = Rc::new(RefCell::new(Node::new(key, value))); self.add_node(&node); self.cache.insert(key, node); self.min_freq = 1; } }; } fn incr_freq(&mut self, node: &Rc<RefCell<Node>>) { let freq = node.borrow().freq; let list = self.freq_map.get_mut(&freq).unwrap(); list.remove(node); if list.is_empty() { self.freq_map.remove(&freq); if freq == self.min_freq { self.min_freq += 1; } } node.borrow_mut().freq += 1; self.add_node(node); } fn add_node(&mut self, node: &Rc<RefCell<Node>>) { let freq = node.borrow().freq; match self.freq_map.get_mut(&freq) { Some(list) => { list.push_front(node); } None => { let mut list = LinkedList::new(); list.push_front(node); self.freq_map.insert(node.borrow().freq, list); } }; } } /** * Your LFUCache object will be instantiated and called as such: * let obj = LFUCache::new(capacity); * let ret_1: i32 = obj.get(key); * obj.put(key, value); */
-
class Node { public: int key; int value; int freq; Node* prev; Node* next; Node(int key, int value) { this->key = key; this->value = value; this->freq = 1; this->prev = nullptr; this->next = nullptr; } }; class DoublyLinkedList { public: Node* head; Node* tail; DoublyLinkedList() { this->head = new Node(-1, -1); this->tail = new Node(-1, -1); this->head->next = this->tail; this->tail->prev = this->head; } void addFirst(Node* node) { node->prev = this->head; node->next = this->head->next; this->head->next->prev = node; this->head->next = node; } Node* remove(Node* node) { node->next->prev = node->prev; node->prev->next = node->next; node->next = nullptr; node->prev = nullptr; return node; } Node* removeLast() { return remove(this->tail->prev); } bool isEmpty() { return this->head->next == this->tail; } }; class LFUCache { public: LFUCache(int capacity) { this->capacity = capacity; this->minFreq = 0; } int get(int key) { if (capacity == 0 || map.find(key) == map.end()) { return -1; } Node* node = map[key]; incrFreq(node); return node->value; } void put(int key, int value) { if (capacity == 0) { return; } if (map.find(key) != map.end()) { Node* node = map[key]; node->value = value; incrFreq(node); return; } if (map.size() == capacity) { DoublyLinkedList* list = freqMap[minFreq]; Node* node = list->removeLast(); map.erase(node->key); } Node* node = new Node(key, value); addNode(node); map[key] = node; minFreq = 1; } private: int capacity; int minFreq; unordered_map<int, Node*> map; unordered_map<int, DoublyLinkedList*> freqMap; void incrFreq(Node* node) { int freq = node->freq; DoublyLinkedList* list = freqMap[freq]; list->remove(node); if (list->isEmpty()) { freqMap.erase(freq); if (freq == minFreq) { minFreq++; } } node->freq++; addNode(node); } void addNode(Node* node) { int freq = node->freq; if (freqMap.find(freq) == freqMap.end()) { freqMap[freq] = new DoublyLinkedList(); } DoublyLinkedList* list = freqMap[freq]; list->addFirst(node); freqMap[freq] = list; } }; /** * Your LFUCache object will be instantiated and called as such: * LFUCache* obj = new LFUCache(capacity); * int param_1 = obj->get(key); * obj->put(key,value); */