Welcome to Subscribe On Youtube
403. Frog Jump
Description
A frog is crossing a river. The river is divided into some number of units, and at each unit, there may or may not exist a stone. The frog can jump on a stone, but it must not jump into the water.
Given a list of stones
positions (in units) in sorted ascending order, determine if the frog can cross the river by landing on the last stone. Initially, the frog is on the first stone and assumes the first jump must be 1
unit.
If the frog's last jump was k
units, its next jump must be either k - 1
, k
, or k + 1
units. The frog can only jump in the forward direction.
Example 1:
Input: stones = [0,1,3,5,6,8,12,17] Output: true Explanation: The frog can jump to the last stone by jumping 1 unit to the 2nd stone, then 2 units to the 3rd stone, then 2 units to the 4th stone, then 3 units to the 6th stone, 4 units to the 7th stone, and 5 units to the 8th stone.
Example 2:
Input: stones = [0,1,2,3,4,8,9,11] Output: false Explanation: There is no way to jump to the last stone as the gap between the 5th and 6th stone is too large.
Constraints:
2 <= stones.length <= 2000
0 <= stones[i] <= 231 - 1
stones[0] == 0
stones
is sorted in a strictly increasing order.
Solutions
Solution 1: Hash Table + Memoization
We use a hash table true
, otherwise it returns false
.
The calculation process of function
If true
;
Otherwise, we need to enumerate the frog’s next jump distance true
, the frog can successfully jump to the end from the true
.
The enumeration is over, indicating that the frog cannot choose the appropriate jump distance on the false
.
In order to prevent repeated calculations in the function
The time complexity is
Solution 2: Dynamic Programming
We define
We can determine the value of
If we can reach the last stone, the answer is true. Otherwise, the answer is false.
The time complexity is
-
class Solution { private Boolean[][] f; private Map<Integer, Integer> pos = new HashMap<>(); private int[] stones; private int n; public boolean canCross(int[] stones) { n = stones.length; f = new Boolean[n][n]; this.stones = stones; for (int i = 0; i < n; ++i) { pos.put(stones[i], i); } return dfs(0, 0); } private boolean dfs(int i, int k) { if (i == n - 1) { return true; } if (f[i][k] != null) { return f[i][k]; } for (int j = k - 1; j <= k + 1; ++j) { if (j > 0) { int h = stones[i] + j; if (pos.containsKey(h) && dfs(pos.get(h), j)) { return f[i][k] = true; } } } return f[i][k] = false; } }
-
class Solution { public: bool canCross(vector<int>& stones) { int n = stones.size(); int f[n][n]; memset(f, -1, sizeof(f)); unordered_map<int, int> pos; for (int i = 0; i < n; ++i) { pos[stones[i]] = i; } function<bool(int, int)> dfs = [&](int i, int k) -> bool { if (i == n - 1) { return true; } if (f[i][k] != -1) { return f[i][k]; } for (int j = k - 1; j <= k + 1; ++j) { if (j > 0 && pos.count(stones[i] + j) && dfs(pos[stones[i] + j], j)) { return f[i][k] = true; } } return f[i][k] = false; }; return dfs(0, 0); } };
-
class Solution: def canCross(self, stones: List[int]) -> bool: @cache def dfs(i, k): if i == n - 1: return True for j in range(k - 1, k + 2): if j > 0 and stones[i] + j in pos and dfs(pos[stones[i] + j], j): return True return False n = len(stones) pos = {s: i for i, s in enumerate(stones)} return dfs(0, 0)
-
func canCross(stones []int) bool { n := len(stones) f := make([][]int, n) pos := map[int]int{} for i := range f { pos[stones[i]] = i f[i] = make([]int, n) for j := range f[i] { f[i][j] = -1 } } var dfs func(int, int) bool dfs = func(i, k int) bool { if i == n-1 { return true } if f[i][k] != -1 { return f[i][k] == 1 } for j := k - 1; j <= k+1; j++ { if j > 0 { if p, ok := pos[stones[i]+j]; ok { if dfs(p, j) { f[i][k] = 1 return true } } } } f[i][k] = 0 return false } return dfs(0, 0) }
-
function canCross(stones: number[]): boolean { const n = stones.length; const pos: Map<number, number> = new Map(); for (let i = 0; i < n; ++i) { pos.set(stones[i], i); } const f: number[][] = new Array(n).fill(0).map(() => new Array(n).fill(-1)); const dfs = (i: number, k: number): boolean => { if (i === n - 1) { return true; } if (f[i][k] !== -1) { return f[i][k] === 1; } for (let j = k - 1; j <= k + 1; ++j) { if (j > 0 && pos.has(stones[i] + j)) { if (dfs(pos.get(stones[i] + j)!, j)) { f[i][k] = 1; return true; } } } f[i][k] = 0; return false; }; return dfs(0, 0); }
-
impl Solution { #[allow(dead_code)] pub fn can_cross(stones: Vec<i32>) -> bool { let n = stones.len(); let mut dp = vec![vec![false; n]; n]; // Initialize the dp vector dp[0][0] = true; // Begin the actual dp process for i in 1..n { for j in (0..=i - 1).rev() { let k = (stones[i] - stones[j]) as usize; if k - 1 > j { break; } dp[i][k] = dp[j][k - 1] || dp[j][k] || dp[j][k + 1]; if i == n - 1 && dp[i][k] { return true; } } } false } }